Finite size mean-field models
暂无分享,去创建一个
[1] R. Hudson,et al. Locally normal symmetric states and an analogue of de Finetti's theorem , 1976 .
[2] A. Mullin,et al. Group Theory and its Applications to Physical Problems , 1962 .
[3] J. Vidal,et al. Entanglement in a first order quantum phase transition , 2003, cond-mat/0312130.
[4] J. Vidal,et al. Entanglement in a second-order quantum phase transition (4 pages) , 2004 .
[5] Christopher King,et al. Minimal entropy of states emerging from noisy quantum channels , 2001, IEEE Trans. Inf. Theory.
[6] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[7] M. Hamermesh. Group theory and its application to physical problems , 1962 .
[8] R. Renner,et al. A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.
[9] Reinhard F. Werner. Remarks on a quantum state extension problem , 1990 .
[10] Ruediger Schack,et al. De Finetti representation theorem for quantum-process tomography (6 pages) , 2003, quant-ph/0307198.
[11] B. D. Finetti. La prévision : ses lois logiques, ses sources subjectives , 1937 .
[12] E. Størmer. Symmetric states of infinite tensor products of C*-algebras , 1969 .
[13] L. Reichl. A modern course in statistical physics , 1980 .
[14] A. S. Holevo,et al. On Weyl-covariant channels , 2008 .
[15] L. J. Savage,et al. Symmetric measures on Cartesian products , 1955 .