Investigation on the Influence of Humidity on Stimulated Brillouin Backscattering in Perfluorinated Polymer Optical Fibers

In this paper perfluorinated graded-index polymer optical fibers are characterized with respect to the influence of relative humidity changes on spectral transmission absorption and Rayleigh backscattering. The hygroscopic and thermal expansion coefficient of the fiber are determined to be CHE = (7.4 ± 0.1) ·10−6 %r.h.−1 and CTE = (22.7 ± 0.3) ·10−6 K−1, respectively. The influence of humidity on the Brillouin backscattering power and linewidth are presented for the first time to our knowledge. The Brillouin backscattering power at a pump wavelength of 1319 nm is affected by temperature and humidity. The Brillouin linewidth is observed to be a function of temperature but not of humidity. The strain coefficient of the BFS is determined to be CS= (−146.5 ± 0.9) MHz/% for a wavelength of 1319 nm within a strain range from 0.1% to 1.5%. The obtained results demonstrate that the humidity-induced Brillouin frequency shift is predominantly caused by the swelling of the fiber over-cladding that leads to fiber straining.

[1]  Kyriacos Kalli,et al.  Carbon Cantilever Beam Health Inspection Using a Polymer Fiber Bragg Grating Array , 2018, Journal of Lightwave Technology.

[2]  Yosuke Mizuno,et al.  Brillouin frequency shift hopping in polymer optical fiber , 2014 .

[3]  Aroon Shenoy,et al.  Thermoplastic melt rheology and processing , 1996 .

[4]  K. Nakamura,et al.  Brillouin Gain Spectrum Characterization in Perfluorinated Graded-Index Polymer Optical Fiber With 62.5- $\mu$m Core Diameter , 2011, IEEE Photonics Technology Letters.

[5]  Yosuke Mizuno,et al.  Cross Effect of Strain and Temperature on Brillouin Frequency Shift in Polymer Optical Fibers , 2017, Journal of Lightwave Technology.

[6]  Katerina Krebber,et al.  Humidity-induced Brillouin frequency shift in perfluorinated polymer optical fibers. , 2018, Optics express.

[7]  Carlos A. F. Marques,et al.  Measurement of Temperature and Relative Humidity with Polymer Optical Fiber Sensors Based on the Induced Stress-Optic Effect , 2018, Sensors.

[8]  Masayuki Morisawa,et al.  A plastic optical fibre sensor for real-time humidity monitoring , 2003 .

[9]  G. Erbert,et al.  DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz , 2011 .

[10]  Gang-Ding Peng,et al.  Fabrication of Polymer Optical Fibre (POF) Gratings , 2017, Sensors.

[11]  Kentaro Nakamura,et al.  Potential of Brillouin scattering in polymer optical fiber for strain-insensitive high-accuracy temperature sensing. , 2010, Optics letters.

[12]  K. Kalli,et al.  Compensation Method for Temperature Cross-Sensitivity in Transverse Force Applications With FBG Sensors in POFs , 2018, Journal of Lightwave Technology.

[13]  Kentaro Nakamura,et al.  Slope-Assisted Brillouin Optical Correlation-Domain Reflectometry Using Polymer Optical Fibers With High Propagation Loss , 2017, Journal of Lightwave Technology.

[14]  Katerina Krebber,et al.  Distributed humidity sensing based on Rayleigh scattering in polymer optical fibers , 2010, European Workshop on Optical Fibre Sensors.

[15]  Christos Markos,et al.  Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. , 2014, Optics express.

[16]  R. Stolen,et al.  Stimulated Brillouin scattering in optical fibers , 1972 .

[17]  G. Johnson,et al.  Water sorption of polycarbonate and its effect on the polymer’s dielectric behavior , 1978 .

[18]  L. Brillouin Diffusion de la lumière et des rayons X par un corps transparent homogène - Influence de l'agitation thermique , 1922 .

[19]  B. Ortega,et al.  Fabrication and Characterization of Bragg Grating in CYTOP POF at 600-nm Wavelength , 2018, IEEE Sensors Letters.

[20]  M. Matsuura,et al.  Evaluation of modal noise in graded-index silica and plastic optical fiber links for radio over multimode fiber systems. , 2014, Optics express.

[21]  Makoto Hikita,et al.  Influence of humidity on refractive index of polymers for optical waveguide and its temperature dependence , 1998 .

[22]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[23]  Sascha Liehr,et al.  Fibre Optic Sensing Techniques Based on Incoherent Optical Frequency Domain Reflectometry , 2015 .

[24]  A. Doǧan,et al.  The effect of preparation conditions of acrylic denture base materials on the level of residual monomer, mechanical properties and water absorption. , 1995, Journal of dentistry.

[25]  D. J. Webb,et al.  Investigation Into Time Response of Polymer Fiber Bragg Grating Based Humidity Sensors , 2012, Journal of Lightwave Technology.

[26]  Jon Oddvar Hellevang,et al.  A high response polyimide fiber optic sensor for distributed humidity measurements , 2018, Sensors and Actuators B: Chemical.

[27]  Yasuhiro Koike,et al.  Fundamentals of Plastic Optical Fibers , 2014 .

[28]  Y. Jack Weitsman,et al.  Fluid Effects in Polymers and Polymeric Composites , 2011 .

[29]  Katerina Krebber,et al.  Incoherent optical frequency domain reflectometry and distributed strain detection in polymer optical fibers , 2009 .

[30]  A. Wosniok Untersuchungen zur Unterscheidung der Einflussgrößen Temperatur und Dehnung bei Anwendung der verteilten Brillouin-Sensorik in der Bauwerksüberwachung , 2013 .

[31]  Eric Mazur,et al.  Polycrystalline anatase titanium dioxide microring resonators with negative thermo-optic coefficient , 2015 .

[32]  Yasuji Kobayashi,et al.  Changes in physical properties of polycarbonate by absorbed water , 1978 .

[33]  Yin Shao,et al.  112-Gb/s transmission over 100m of graded-index plastic optical fiber for optical data center applications , 2012, OFC/NFOEC.

[34]  Graded-Index Polymer Optical Fiber (GI-POF) , 2008 .

[35]  Yongkang Dong,et al.  Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis. , 2014, Optics express.

[36]  C. Loyez,et al.  Exploit the Bandwidth Capacities of the Perfluorinated Graded Index Polymer Optical Fiber for Multi-Services Distribution , 2011 .

[37]  Andreas Klehr,et al.  High-Power Pulse Generation in GHz Range With 1064-nm DBR Tapered Laser , 2010, IEEE Photonics Technology Letters.

[38]  Katerina Krebber,et al.  Distributed Humidity Sensing in PMMA Optical Fibers at 500 nm and 650 nm Wavelengths , 2017, Sensors.

[39]  Yasuhiro Koike,et al.  High-Speed Graded-Index Plastic Optical Fibers and Their Simple Interconnects for 4K/8K Video Transmission , 2016, Journal of Lightwave Technology.

[40]  M. Muir Physical Chemistry , 1888, Nature.

[41]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[42]  Bjarke Rose,et al.  Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings , 2011 .

[43]  David O'Hagan,et al.  Understanding organofluorine chemistry. An introduction to the C-F bond. , 2008, Chemical Society reviews.

[44]  Kentaro Nakamura,et al.  Distributed Brillouin Sensing With Centimeter-Order Spatial Resolution in Polymer Optical Fibers , 2014, Journal of Lightwave Technology.

[45]  K. Krebber,et al.  Molecular alignment relaxation in polymer optical fibers for sensing applications , 2016 .

[46]  Jon Oddvar Hellevang,et al.  A fully distributed fibre optic sensor for relative humidity measurements , 2017 .

[47]  L. Thévenaz,et al.  Brillouin gain spectrum characterization in single-mode optical fibers , 1997 .