Signal identication in ERP data by decorrelated Higher

[1]  Nathaniel J. Smith,et al.  Regression-based estimation of ERP waveforms: II. Nonlinear effects, overlap correction, and practical considerations. , 2015, Psychophysiology.

[2]  D. Guthrie,et al.  Significance testing of difference potentials. , 1991, Psychophysiology.

[3]  John D. Storey,et al.  Capturing Heterogeneity in Gene Expression Studies by Surrogate Variable Analysis , 2007, PLoS genetics.

[4]  David Causeur,et al.  A factor model to analyze heterogeneity in gene expression , 2010, BMC Bioinformatics.

[5]  Chloé Friguet,et al.  A Factor Model Approach to Multiple Testing Under Dependence , 2009 .

[6]  K. Strimmer,et al.  Feature selection in omics prediction problems using cat scores and false nondiscovery rate control , 2009, 0903.2003.

[7]  Nancy R. Zhang,et al.  Multiple hypothesis testing adjusted for latent variables, with an application to the AGEMAP gene expression data , 2013, 1301.2420.

[8]  T W Picton,et al.  The P300 Wave of the Human Event‐Related Potential , 1992, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[9]  D. Donoho,et al.  Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.

[10]  P. Hall,et al.  Innovated Higher Criticism for Detecting Sparse Signals in Correlated Noise , 2009, 0902.3837.

[11]  Céline Bugli,et al.  Functional ANOVA with random functional effects: an application to event‐related potentials modelling for electroencephalograms analysis , 2006, Statistics in medicine.

[12]  Korbinian Strimmer,et al.  Gene ranking and biomarker discovery under correlation , 2009, Bioinform..

[13]  Korbinian Strimmer,et al.  Signal identification for rare and weak features: higher criticism or false discovery rates? , 2011, Biostatistics.

[14]  D. Donoho,et al.  Higher criticism thresholding: Optimal feature selection when useful features are rare and weak , 2008, Proceedings of the National Academy of Sciences.

[15]  Nathaniel J. Smith,et al.  Regression-based estimation of ERP waveforms: I. The rERP framework. , 2015, Psychophysiology.

[16]  David Causeur,et al.  ACCOUNTING FOR TIME DEPENDENCE IN LARGE-SCALE MULTIPLE TESTING OF EVENT-RELATED POTENTIAL DATA , 2016 .

[17]  S. Hsieh,et al.  A factor-adjusted multiple testing procedure for ERP data analysis , 2012, Behavior research methods.

[18]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics , 2011 .

[19]  E. Gordon,et al.  THE TEST-RETEST RELIABILITY OF A STANDARDIZED NEUROCOGNITIVE AND NEUROPHYSIOLOGICAL TEST BATTERY: “NEUROMARKER” , 2005, The International journal of neuroscience.

[20]  David Causeur,et al.  Stability of feature selection in classification issues for high-dimensional correlated data , 2015, Statistics and Computing.

[21]  P. Bickel,et al.  Some theory for Fisher''s linear discriminant function , 2004 .

[22]  Jiashun Jin,et al.  Optimal detection of heterogeneous and heteroscedastic mixtures , 2011 .

[23]  P. Hall,et al.  PROPERTIES OF HIGHER CRITICISM UNDER STRONG DEPENDENCE , 2008, 0803.2095.

[24]  Jiashun Jin,et al.  Feature selection by higher criticism thresholding achieves the optimal phase diagram , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Jeffrey T Leek,et al.  A general framework for multiple testing dependence , 2008, Proceedings of the National Academy of Sciences.