Investigation of Proton Diffusion Coefficient for PbO2 Prepared from Intermediate Oxides

[1]  M. Benaicha,et al.  Electrodeposition and characterization of red selenium thin film—effect of the substrate on the nucleation mechanism , 2017, Russian Journal of Electrochemistry.

[2]  L. Zerroual,et al.  Electrochemical performance of γMnO2 prepared from the active mass of used batteries , 2015, Russian Journal of Applied Chemistry.

[3]  L. Zerroual,et al.  Effect of a mineral additive on the electrical performances of the positive plate of lead acid battery , 2015 .

[4]  L. Zerroual,et al.  PbSO4 as a precursor for positive active material electrodes , 2012 .

[5]  A. Lin,et al.  PbO2-SnO2 composite anode with interconnected structure for the electrochemical incineration of phenol , 2011 .

[6]  D. Pavlov,et al.  Influence of some metal ions on the structure and properties of doped β-PbO2 , 2009 .

[7]  L. Zerroual,et al.  Mechanism of the reduction of α- and β-PbO2 electrodes using an all-solid-state system , 2000 .

[8]  L. Zerroual,et al.  Thermal degradation of α- and β-PbO2 and its relationship to capacity loss , 2000 .

[9]  L. Zerroual,et al.  Role of hydration water in the reduction process of PbO2 in lead/acid cells , 1997 .

[10]  A. Hammouche,et al.  Electrochemical behaviour of α- and β-PbO2 , 1996 .

[11]  A. Hammouche,et al.  Electrochemical behaviour of α- and β-PbO2: Part II: lithium diffusion from non-aqueous electrolyte , 1996 .

[12]  L. Zerroual,et al.  Heat treatment of α- and β-battery lead dioxide and its relationship to capacity loss , 1996 .

[13]  N. Chelali,et al.  Electrochemical behavior of α- and β-PbO2. Part I: Proton diffusion from “all solid-state” protonic electrolyte , 1994 .

[14]  D. Pavlov,et al.  The Lead‐Acid Battery Lead Dioxide Active Mass: A Gel‐Crystal System with Proton and Electron Conductivity , 1992 .

[15]  P. Rüetschi,et al.  Influence of Crystal Structure and Interparticle Contact on the Capacity of PbO2 Electrodes , 1992 .

[16]  D. Pavlov,et al.  Hydration and Amorphization of Active Mass PbO2 Particles and Their Influence on the Electrical Properties of the Lead‐Acid Battery Positive Plate , 1989 .

[17]  B. Jacq,et al.  Proton motions in battery lead dioxides , 1988 .

[18]  A. Jessel,et al.  A nuclear magnetic resonance study of hydrogen in battery and chemically prepared material , 1987 .

[19]  J. Gavarri,et al.  Mise en evidence et localisation des protons dans les bioxydes de plomb PbO2α et β chimiques et électrochimiques , 1984 .

[20]  A. Santoro,et al.  A Neutron Powder Diffraction Study of α ‐ and β ‐ PbO2 in the Positive Electrode Material of Lead‐Acid Batteries , 1983 .

[21]  P. T. Moseley,et al.  Inelastic neutron scattering and transmission electron microscope studies of lead dioxide , 1983 .

[22]  R. J. Hill The crystal structures of lead dioxides from the positive plate of the lead/acid battery , 1982 .

[23]  P. Moseley,et al.  Defect structure of lead dioxide , 1982 .

[24]  J. Pohl,et al.  The electronic conductivity of compact lead dioxide samples with various stoichiometric compositions , 1981 .

[25]  A. Santoro,et al.  Powder neutron diffraction study of chemically prepared β-lead dioxide , 1980 .

[26]  H. Rickert,et al.  Elektrochemische Untersuchungen zur Permeation und Löslichkeit von Wasserstoff in Bleidioxid , 1978 .

[27]  S. M. Caulder,et al.  The Hydrogen‐Loss Concept of Battery Failure: The PbO2 Electrode , 1973 .

[28]  R. Wyckoff,et al.  The Structure of Crystals , 1932, Nature.

[29]  P. Scherrer Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen , 1912 .

[30]  L. Zerroual,et al.  Physicochemical and electrochemical study of lead acid battery positive active mass ( PAM ) modified by the addition of bismuth , 2022 .