ATOMISTIC ASPECTS OF CRACK PROPAGATION IN BRITTLE MATERIALS: Multimillion Atom Molecular Dynamics Simulations

▪ Abstract Atomistic aspects of dynamic fracture in a variety of brittle crystalline, amorphous, nanophase, and nanocomposite materials are reviewed. Molecular dynamics (MD) simulations, ranging from a million to 1.5 billion atoms, are performed on massively parallel computers using highly efficient multiresolution algorithms. These simulations shed new light on (a) branching, deflection, and arrest of cracks; (b) growth of nanoscale pores ahead of the crack and how pores coalesce with the crack to cause fracture; and (c) the influence of these mechanisms on the morphology of fracture surfaces. Recent advances in novel multiscale simulation schemes combining quantum mechanical, molecular dynamics, and finite-element approaches and the use of these hybrid approaches in the study of crack propagation are also discussed.

[1]  Abell Empirical chemical pseudopotential theory of molecular and metallic bonding. , 1985, Physical review. B, Condensed matter.

[2]  J. Tersoff,et al.  New empirical approach for the structure and energy of covalent systems. , 1988, Physical review. B, Condensed matter.

[3]  Anthony Skjellum,et al.  Using MPI - portable parallel programming with the message-parsing interface , 1994 .

[4]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching , 1984 .

[5]  J. Mayer,et al.  Interatomic Distances in Crystals of the Alkali Halides , 1933 .

[6]  Noam Bernstein,et al.  Spanning the length scales in dynamic simulation , 1998 .

[7]  Zhou,et al.  Lattice imperfections studied by use of lattice Green's functions. , 1992, Physical review. B, Condensed matter.

[8]  Jin Yu,et al.  Crack Front Propagation and Fracture in a Graphite Sheet: A Molecular-Dynamics Study on Parallel Computers , 1997 .

[9]  Elisabeth Bouchaud,et al.  Scaling properties of cracks , 1997 .

[10]  I. N. Sneddon The distribution of stress in the neighbourhood of a crack in an elastic solid , 1946, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[12]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[13]  M. Marder,et al.  How Things Break , 1996 .

[14]  A. Nakano,et al.  Coupling length scales for multiscale atomistics-continuum simulations: atomistically induced stress distributions in Si/Si3N4 nanopixels. , 2001, Physical review letters.

[15]  Kalia,et al.  Low-energy floppy modes in high-temperature ceramics. , 1995, Physical review letters.

[16]  R. Kalia,et al.  Crystal Structure and Phonon Density of States of High-Temperature Ceramic Silicon Nitride , 1995 .

[17]  D. Ellis,et al.  Embedded cluster models for electronic states of silicate glasses , 2000 .

[18]  Li,et al.  Crack arrest by residual bonding in resistor and spring networks. , 1988, Physical review. B, Condensed matter.

[19]  J. Q. Broughton,et al.  Concurrent Coupling of Length Scales in Solid State Systems , 2000 .

[20]  Michele Parrinello,et al.  On the Quantum Nature of the Shared Proton in Hydrogen Bonds , 1997, Science.

[21]  M. Parrinello,et al.  AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS : BASIC IDEAS , 1996 .

[22]  J. J. Mecholsky,et al.  Quantitative Analysis of Brittle Fracture Surfaces Using Fractal Geometry , 1989 .

[23]  Rajiv K. Kalia,et al.  Role of Ultrafine Microstructures in Dynamic Fracture in Nanophase Silicon Nitride , 1997 .

[24]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[25]  R. Kalia,et al.  Million atom molecular dynamics simulations of materials on parallel computers , 1996 .

[26]  Gross,et al.  Energy dissipation in dynamic fracture. , 1996, Physical review letters.

[27]  Beale,et al.  Elastic fracture in random materials. , 1988, Physical review. B, Condensed matter.

[28]  János Kertész,et al.  SELF-AFFINE RUPTURE LINES IN PAPER SHEETS , 1993 .

[29]  Paul Tavan,et al.  A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields , 1999 .

[30]  Michael P Marder,et al.  Origin of crack tip instabilities , 1994, chao-dyn/9410009.

[31]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[32]  Swinney,et al.  Instability in the propagation of fast cracks. , 1992, Physical review. B, Condensed matter.

[33]  H. Fischmeister,et al.  Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model , 1991 .

[34]  Ching Dynamic stresses at a moving crack tip in a model of fracture propagation. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  C. Inglis Stresses in a plate due to the presence of cracks and sharp corners , 1913 .

[36]  Stéphane Roux,et al.  Field measurements of the roughness of fault surfaces , 1993 .

[37]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[38]  Rino,et al.  Interaction potential for SiO2: A molecular-dynamics study of structural correlations. , 1990, Physical review. B, Condensed matter.

[39]  J. Tersoff,et al.  Empirical interatomic potential for carbon, with application to amorphous carbon. , 1988, Physical review letters.

[40]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[41]  Rajiv K. Kalia,et al.  Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers , 2001 .

[42]  M. Marder,et al.  Instability in lattice fracture. , 1993, Physical review letters.

[43]  Gross,et al.  Local crack branching as a mechanism for instability in dynamic fracture. , 1995, Physical review letters.

[44]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[45]  S. Glotzer,et al.  Molecular and Mesoscale Simulation Methods for Polymer Materials , 2002 .

[46]  E. Guilloteau,et al.  The direct observation of the core region of a propagating fracture crack in glass , 1996 .

[47]  Bouchaud,et al.  Statistics of branched fracture surfaces. , 1993, Physical review. B, Condensed matter.

[48]  R. Birringer,et al.  Ceramics ductile at low temperature , 1987, Nature.

[49]  A. Nakano,et al.  Multiresolution molecular dynamics algorithm for realistic materials modeling on parallel computers , 1994 .

[50]  Y Ohta,et al.  The tight-binding bond model , 1988 .

[51]  Roux,et al.  Roughness of two-dimensional cracks in wood. , 1994, Physical review letters.

[52]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[53]  Sanders,et al.  Are nanophase grain boundaries anomalous? , 1995, Physical review letters.

[54]  M. A. Dokainish,et al.  Simulation of the (001) plane crack in α-iron employing a new boundary scheme , 1982 .

[55]  J. Tersoff,et al.  Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. , 1989, Physical review. B, Condensed matter.

[56]  D. Tildesley,et al.  Multiple time-step methods in molecular dynamics , 1978 .

[57]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[58]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[59]  Swinney,et al.  Instability in dynamic fracture. , 1991, Physical review letters.

[60]  Brodbeck,et al.  Instability dynamics of fracture: A computer simulation investigation. , 1994, Physical review letters.

[61]  Rajiv K. Kalia,et al.  Coupling Length Scales for Multiscale Atomistics-Continuum Simulations , 2001 .

[62]  Nakano,et al.  Dynamics and morphology of brittle cracks: A molecular-dynamics study of silicon nitride. , 1995, Physical review letters.

[63]  Abraham Dynamics of Brittle Fracture with Variable Elasticity. , 1996, Physical review letters.

[64]  Michael P Marder,et al.  Cracks and Atoms , 1999 .

[65]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[66]  W. C. Swope,et al.  A computer simulation method for the calculation of equilibrium constants for the formation of physi , 1981 .

[67]  M.G.B. Drew,et al.  The art of molecular dynamics simulation , 1996 .

[68]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[69]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[70]  R. Dauskardt,et al.  On the interpretation of the fractal character of fracture surfaces , 1990 .

[71]  Walter Kohn,et al.  Quantum Density Oscillations in an Inhomogeneous Electron Gas , 1965 .

[72]  A. Evans Perspective on the Development of High‐Toughness Ceramics , 1990 .

[73]  Florin Paun,et al.  Fracture and damage at a microstructural scale , 1999, Comput. Sci. Eng..

[74]  Rajiv K. Kalia,et al.  Crack propagation and fracture in ceramic films—million atom molecular dynamics simulations on parallel computers , 1996 .

[75]  J. Tersoff,et al.  New empirical model for the structural properties of silicon. , 1986, Physical review letters.

[76]  Rajiv K. Kalia,et al.  Parallel multiple-time-step molecular dynamics with three-body interaction , 1993 .

[77]  Rajiv K. Kalia,et al.  Morphology of pores and interfaces and mechanical behavior of nanocluster-assembled silicon nitride ceramic , 1997 .

[78]  E. Yoffe,et al.  LXXV. The moving griffith crack , 1951 .

[79]  Harrison Overlap interactions and bonding in ionic solids. , 1986, Physical review. B, Condensed matter.

[80]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[81]  Mccormick,et al.  Acoustic emissions from rapidly moving cracks. , 1993, Physical review letters.

[82]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[83]  Rajiv K. Kalia,et al.  Scalable I/O of large-scale molecular dynamics simulations: A data-compression algorithm , 2000 .

[84]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[85]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[86]  Roux,et al.  Experimental measurements of the roughness of brittle cracks. , 1992, Physical review letters.

[87]  B. Mandelbrot,et al.  Fractal character of fracture surfaces of metals , 1984, Nature.