Input-to-State Stability of Infinite-Dimensional Systems: Recent Results and Open Questions

In a pedagogical but exhaustive manner, this survey reviews the main results on input-to-state stability (ISS) for infinite-dimensional systems. This property allows estimating the impact of inputs and initial conditions on both the intermediate values and the asymptotic bound on the solutions. ISS has unified the input-output and Lyapunov stability theories and is a crucial property in the stability theory of control systems as well as for many applications whose dynamics depend on parameters, unknown perturbations, or other inputs. In this paper, starting from classic results for nonlinear ordinary differential equations, we motivate the study of ISS property for distributed parameter systems. Then fundamental properties are given, as an ISS superposition theorem and characterizations of (global and local) ISS in terms of Lyapunov functions. We explain in detail the functional-analytic approach to ISS theory of linear systems with unbounded input operators, with special attention devoted to ISS theory of boundary control systems. The Lyapunov method is shown to be very useful for both linear and nonlinear models, including parabolic and hyperbolic partial differential equations. Next, we show the efficiency of the ISS framework to study the stability of large-scale networks, coupled either via the boundary or via the interior of the spatial domain. ISS methodology allows reducing the stability analysis of complex networks, by considering the stability properties of its components and the interconnection structure between the subsystems. An extra section is devoted to ISS theory of time-delay systems with the emphasis on techniques, which are particularly suited for this class of systems. Finally, numerous applications are considered in this survey, where ISS properties play a crucial role in their study. This survey suggests many open problems throughout the paper.

[1]  M. Krstić,et al.  Sampled-data boundary feedback control of 1-D parabolic PDEs , 2017, Autom..

[2]  Zhong-Ping Jiang,et al.  A Nonlinear Small-Gain Theorem for Large-Scale Infinite-Dimensional Systems , 2018, J. Syst. Sci. Complex..

[3]  M Pardalos Panos,et al.  Optimization and Control of Bilinear Systems , 2008 .

[4]  Iasson Karafyllis,et al.  Stabilization of Nonlinear Delay Systems: A Tutorial on Recent Results , 2016 .

[5]  C. Prieur,et al.  Local Input-to-State Stabilization of 1-D Linear Reaction-Diffusion Equation with Bounded Feedback , 2018 .

[6]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[7]  Georges Bastin,et al.  Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks , 2009 .

[8]  Iasson Karafyllis,et al.  ISS In Different Norms For 1-D Parabolic Pdes With Boundary Disturbances , 2016, SIAM J. Control. Optim..

[9]  Zhong-Ping Jiang,et al.  Remarks on integral-ISS for systems with delays , 2012, Proceedings of the 10th World Congress on Intelligent Control and Automation.

[10]  Jianhong Wu,et al.  Introduction to Functional Differential Equations , 2013 .

[11]  Qiao Zhu,et al.  Converse Lyapunov Theorem of Input-to-State Stability for Time-delay Systems , 2010 .

[12]  Michael G. Crandall,et al.  GENERATION OF SEMI-GROUPS OF NONLINEAR TRANSFORMATIONS ON GENERAL BANACH SPACES, , 1971 .

[13]  Shanaz Tiwari Stability analysis for nonlinear systems with time-delays , 2012 .

[14]  Pierdomenico Pepe,et al.  Integral Input-to-State Stability of Delay Systems Based on Lyapunov-Krasovskii Functionals with Point-Wise Dissipation Rate , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[15]  Hiroshi Ito,et al.  Strong iISS is preserved under cascade interconnection , 2014, Autom..

[16]  H. Karimi,et al.  Semiglobal practical integral input-to-state stability for a family of parameterized discrete-time interconnected systems with application to sampled-data control systems , 2015 .

[17]  Daniel E. Geer,et al.  Convergence , 2021, IEEE Secur. Priv..

[18]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[19]  Fabian R. Wirth,et al.  A note on input-to-state stability of linear and bilinear infinite-dimensional systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[20]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[21]  G. P. Szegö,et al.  Stability theory of dynamical systems , 1970 .

[22]  Tosio Kato,et al.  Nonlinear semigroups and evolution equations , 1967 .

[23]  Fernando Paganini,et al.  Distributed control of spatially invariant systems , 2002, IEEE Trans. Autom. Control..

[24]  Andrii Mironchenko Small-gain theorems for stability of infinite networks , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[25]  Sophie Tarbouriech,et al.  Stabilization of continuous-time linear systems subject to input quantization , 2015, Autom..

[26]  Institute for Applied Problems of Mechanics and Mathematics, Ukrainian Academy of Sciences , 2004 .

[27]  SERGEY DASHKOVSKIY,et al.  Input-to-State Stability of Nonlinear Impulsive Systems , 2012, SIAM J. Control. Optim..

[28]  Xavier Litrico,et al.  Modeling and Control of Hydrosystems , 2009 .

[29]  Zhong-Ping Jiang,et al.  Nonlinear Control of Dynamic Networks , 2014 .

[30]  Georges Bastin,et al.  Dissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems , 2008, SIAM J. Control. Optim..

[31]  J. Coron Control and Nonlinearity , 2007 .

[32]  J. Tsinias Input to state stability properties of nonlinear systems and applications to bounded feedback stabilization using saturation , 1997 .

[33]  Nicolas Marchand,et al.  Event-Based Boundary Control of a Linear $2\times 2$ Hyperbolic System via Backstepping Approach , 2018, IEEE Transactions on Automatic Control.

[34]  Iasson Karafyllis,et al.  Decay Estimates for 1-D Parabolic PDEs with Boundary Disturbances , 2017, ESAIM: Control, Optimisation and Calculus of Variations.

[35]  Jun Zheng,et al.  Input-to-state stability with respect to boundary disturbances for a class of semi-linear parabolic equations , 2017, Autom..

[36]  Christophe Prieur,et al.  A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients , 2013, IEEE Transactions on Automatic Control.

[37]  Miroslav Krstic,et al.  State-dependent input delay-compensated Bang-Bang control: Application to 3D printing based on screw-extruder , 2015, 2015 American Control Conference (ACC).

[38]  Rajnikant V. Patel,et al.  A small gain framework for networked cooperative force-reflecting teleoperation , 2013, Autom..

[39]  Sophie Tarbouriech,et al.  Stability analysis and stabilization of systems presenting nested saturations , 2006, IEEE Transactions on Automatic Control.

[40]  Charles Poussot-Vassal,et al.  Gust Load Alleviation: Identification, Control, and Wind Tunnel Testing of a 2-D Aeroelastic Airfoil , 2017, IEEE Transactions on Control Systems Technology.

[41]  Felix L. Schwenninger,et al.  Strong input-to-state stability for infinite-dimensional linear systems , 2017, Math. Control. Signals Syst..

[42]  A. Bátkai,et al.  Semigroups for Delay Equations , 2005 .

[43]  Karl Henrik Johansson,et al.  String Stability and a Delay-Based Spacing Policy for Vehicle Platoons Subject to Disturbances , 2017, IEEE Transactions on Automatic Control.

[44]  Bjorn Augner Stabilisation of Infinite-Dimensional Port-Hamiltonian Systems via Dissipative Boundary Feedback , 2018 .

[45]  Ilia G. Polushin,et al.  Control schemes for stable teleoperation with communication delay based on IOS small gain theorem , 2006, Autom..

[46]  Scott W. Hansen,et al.  New results on the operator Carleson measure criterion , 1997 .

[47]  Hiroshi Ito,et al.  On a small gain theorem for ISS networks in dissipative Lyapunov form , 2009, 2009 European Control Conference (ECC).

[48]  M. Sajjad Edalatzadeh,et al.  Stability and Well-Posedness of a Nonlinear Railway Track Model , 2018, IEEE Control Systems Letters.

[49]  Sergey Dashkovskiy,et al.  ISDS small-gain theorem and construction of ISDS Lyapunov functions for interconnected systems , 2010, Syst. Control. Lett..

[50]  Christophe Prieur,et al.  Safety Factor Profile Control in a Tokamak , 2013, Springer Briefs in Electrical and Computer Engineering.

[51]  Sergey Dashkovskiy,et al.  Input-to-state stability of infinite-dimensional control systems , 2012, Mathematics of Control, Signals, and Systems.

[52]  Jonathan R. Partington,et al.  Admissibility of Control and Observation Operators for Semigroups: A Survey , 2004 .

[53]  Fumitoshi Matsuno,et al.  Boundary cooperative control by flexible Timoshenko arms , 2017, Autom..

[54]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[55]  Hernan Haimovich,et al.  ISS implies iISS even for switched and time-varying systems (if you are careful enough) , 2019 .

[56]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[57]  I. Karafyllis A system-theoretic framework for a wide class of systems I: Applications to numerical analysis , 2007 .

[58]  Fabian R. Wirth,et al.  N ov 2 01 9 NON-COERCIVE LYAPUNOV FUNCTIONS FOR INPUT-TO-STATE STABILITY OF INFINITE-DIMENSIONAL SYSTEMS , 2019 .

[59]  Andrii Mironchenko Small Gain Theorems for General Networks of Heterogeneous Infinite-Dimensional Systems , 2021, SIAM J. Control. Optim..

[60]  N. P. Bhatia,et al.  Attractors in dynamical systems , 1964 .

[61]  Hans Zwart,et al.  Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces , 2012 .

[62]  Eduardo Sontag,et al.  New characterizations of input-to-state stability , 1996, IEEE Trans. Autom. Control..

[63]  P. Pepe,et al.  A Lyapunov-Krasovskii methodology for ISS and iISS of time-delay systems , 2006, Syst. Control. Lett..

[64]  V. I. Vorotnikov Partial stability and control: The state-of-the-art and development prospects , 2005 .

[65]  Stuart Townley,et al.  From PDEs with Boundary Control to the Abstract State Equation with an Unbounded Input Operator: A Tutorial , 2000, Eur. J. Control.

[66]  Iasson Karafyllis,et al.  Sampled-Data Observers for Delay Systems and Hyperbolic PDE-ODE Loops , 2019, Autom..

[67]  Christophe Prieur,et al.  D1-Input-to-state stability of a time-varying nonhomogeneous diffusive equation subject to boundary disturbances , 2012, 2012 American Control Conference (ACC).

[68]  Felix L. Schwenninger,et al.  Integral input-to-state stability of unbounded bilinear control systems , 2018, Mathematics of Control, Signals, and Systems.

[69]  Frédéric Mazenc,et al.  ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws , 2012, Mathematics of Control, Signals, and Systems.

[70]  Hans Zwart,et al.  Well-posedness of infinite-dimensional linear systems with nonlinear feedback , 2019, Syst. Control. Lett..

[71]  M. Malisoff,et al.  Constructions of Strict Lyapunov Functions , 2009 .

[72]  Jun Zheng,et al.  A weak maximum principle-based approach for input-to-state stability analysis of nonlinear parabolic PDEs with boundary disturbances , 2019, Mathematics of Control, Signals, and Systems.

[73]  Laurent Lefèvre,et al.  Discussion on: 'From PDEs with Boundary Control to the Abstract State Equation with an Unbounded Input Operator: A Tutorial' , 2000, Eur. J. Control.

[74]  Isabelle Queinnec,et al.  Stability analysis for linear systems with input backlash through sufficient LMI conditions , 2010, Autom..

[75]  Sophie Tarbouriech,et al.  On sensor quantization in linear control systems: Krasovskii solutions meet semidefinite programming , 2019, IMA J. Math. Control. Inf..

[76]  H. Banks,et al.  Hereditary Control Problems: Numerical Methods Based on Averaging Approximations , 1978 .

[77]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[78]  Iasson Karafyllis,et al.  Small-Gain-Based Boundary Feedback Design for Global Exponential Stabilization of One-Dimensional Semilinear Parabolic PDEs , 2019, SIAM J. Control. Optim..

[79]  D. Arzelier,et al.  Simultaneous $H_\infty$ Vibration Control of Fluid/Plate System via Reduced-Order Controller , 2010, IEEE Transactions on Control Systems Technology.

[80]  Zhong-Ping Jiang,et al.  A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems , 1996, Autom..

[81]  Iasson Karafyllis,et al.  Stability and Stabilization of Nonlinear Systems , 2011 .

[82]  Charles Poussot-Vassal,et al.  A new frequency-domain subspace algorithm with restricted poles location through LMI regions and its application to a wind tunnel test , 2017, Int. J. Control.

[83]  W. Marsden I and J , 2012 .

[84]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[85]  G. Bastin,et al.  Stability and Boundary Stabilization of 1-D Hyperbolic Systems , 2016 .

[86]  David Angeli,et al.  A Unifying Integral ISS Framework for Stability of Nonlinear Cascades , 2001, SIAM J. Control. Optim..

[87]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[88]  Christopher M. Kellett,et al.  A compendium of comparison function results , 2014, Math. Control. Signals Syst..

[89]  S. Dashkovskiy,et al.  Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods , 2010, 1011.2865.

[90]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[91]  Faa Federico Felici,et al.  Experimental validation of a Lyapunov-based controller for the plasma safety factor and plasma pressure in the TCV tokamak , 2018 .

[92]  Fabian R. Wirth,et al.  Input-to-state stability of time-delay systems: Criteria and open problems , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[93]  Hiroshi Ito Utility of Iiss in Composing Lyapunov Functions for Interconnections , 2013, NOLCOS.

[94]  Sergey Dashkovskiy,et al.  Input-to-state stability of interconnected hybrid systems , 2010, Autom..

[95]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[96]  Robert Shorten,et al.  Input-to-State Stability of a Clamped-Free Damped String in the Presence of Distributed and Boundary Disturbances , 2018, IEEE Transactions on Automatic Control.

[97]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[98]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[99]  Denis Arzelier,et al.  Robust control of a bimorph mirror for adaptive optics systems. , 2008, Applied optics.

[100]  Jonathan R. Partington,et al.  Remarks on Input-to-State Stability and Non-Coercive Lyapunov Functions , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[101]  Genqi Xu,et al.  Stabilization for a joint string equation with input disturbance , 2019, IMA J. Math. Control. Inf..

[102]  A. Mironchenko Lyapunov functions for input-to-state stability of infinite-dimensional systems with integrable inputs , 2020 .

[104]  Zhong-Ping Jiang,et al.  Input-to-Output Stability for Systems Described by Retarded Functional Differential Equations , 2008, Eur. J. Control.

[105]  Sophie Tarbouriech,et al.  Disturbance-to-State Stabilization and Quantized Control for Linear Hyperbolic Systems , 2017, ArXiv.

[106]  Andrii Mironchenko,et al.  Criteria for Input-to-State Practical Stability , 2017, IEEE Transactions on Automatic Control.

[107]  Guchuan Zhu,et al.  A De Giorgi Iteration-Based Approach for the Establishment of ISS Properties for Burgers’ Equation With Boundary and In-domain Disturbances , 2018, IEEE Transactions on Automatic Control.

[108]  Felix L. Schwenninger,et al.  On continuity of solutions for parabolic control systems and input-to-state stability , 2017, Journal of Differential Equations.

[109]  Zhong-Ping Jiang,et al.  Small-gain theorem for ISS systems and applications , 1994, Math. Control. Signals Syst..

[110]  J. Graver,et al.  Graduate studies in mathematics , 1993 .

[111]  Bogdan Robu,et al.  Simultaneous H∞ vibration control of fluid/plate system via reduced-order controller , 2010, 49th IEEE Conference on Decision and Control (CDC).

[112]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[113]  Eduardo Sontag,et al.  Output-to-state stability and detectability of nonlinear systems , 1997 .

[114]  Hans Zwart,et al.  System theoretic properties of a class of spatially invariant systems , 2009, Autom..

[115]  Christophe Prieur,et al.  Cone-bounded feedback laws for m-dissipative operators on Hilbert spaces , 2017, Math. Control. Signals Syst..

[116]  Georges Bastin,et al.  Dissipative Boundary Conditions for One-Dimensional Quasi-linear Hyperbolic Systems: Lyapunov Stability for the C1-Norm , 2015, SIAM J. Control. Optim..

[117]  Hiroshi Ito,et al.  Combining iISS and ISS With Respect to Small Inputs: The Strong iISS Property , 2014, IEEE Transactions on Automatic Control.

[118]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[119]  Hiroshi Ito,et al.  Capability and limitation of max- and sum-type construction of Lyapunov functions for networks of iISS systems , 2012, Autom..

[120]  A. S. MorseCenter Certainty Equivalence Implies Detectability , 1998 .

[121]  Georges Bastin,et al.  Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws , 2012, Autom..

[122]  Job C. Oostveen Strongly Stabilizable Distributed Parameter Systems , 1987 .

[123]  A. Y. Khapalov Controllability of the Semilinear Parabolic Equation Governed by a Multiplicative Control in the Reaction Term: A Qualitative Approach , 2003, SIAM J. Control. Optim..

[124]  Mohamadreza Ahmadi,et al.  Dissipation inequalities for the analysis of a class of PDEs , 2016, Autom..

[125]  Daniel Liberzon,et al.  Input to State Stabilizing Controller for Systems With Coarse Quantization , 2012, IEEE Transactions on Automatic Control.

[126]  M. Krstić,et al.  Input-to-State Stability for PDEs , 2018, Encyclopedia of Systems and Control.

[127]  Eduardo Sontag,et al.  On characterizations of the input-to-state stability property , 1995 .

[128]  Mark R. Opmeer,et al.  Infinite-Dimensional Lur'e Systems: Input-To-State Stability and Convergence Properties , 2019, SIAM J. Control. Optim..

[129]  Iasson Karafyllis,et al.  Input-to-State Stability for the Control of Stefan Problem with Respect to Heat Loss , 2019 .

[130]  Hiroshi Ito,et al.  Characterizations of integral input-to-state stability for bilinear systems in infinite dimensions , 2014, 1406.2458.

[131]  A. Haraux,et al.  An Introduction to Semilinear Evolution Equations , 1999 .

[132]  Sophie Tarbouriech,et al.  Wave Equation With Cone-Bounded Control Laws , 2016, IEEE Transactions on Automatic Control.

[133]  Georges Bastin,et al.  Stability of linear density-flow hyperbolic systems under PI boundary control , 2015, Autom..

[134]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[135]  Fabian R. Wirth,et al.  Lyapunov characterization of input-to-state stability for semilinear control systems over Banach spaces , 2017, Syst. Control. Lett..

[136]  R. G. Cooke Functional Analysis and Semi-Groups , 1949, Nature.

[137]  Warren E. Dixon,et al.  Adaptive boundary control of store induced oscillations in a flexible aircraft wing , 2016, Autom..

[138]  C. SIAMJ.,et al.  ON THE NULL ASYMPTOTIC STABILIZATION OF THE TWO-DIMENSIONAL INCOMPRESSIBLE EULER EQUATIONS IN A SIMPLY CONNECTED DOMAIN , 1999 .

[139]  Petros G. Voulgaris,et al.  A convex characterization of distributed control problems in spatially invariant systems with communication constraints , 2005, Syst. Control. Lett..

[140]  E. P. Ryan,et al.  The Circle Criterion and Input-to-State Stability for Infinite-Dimensional Systems , 2008 .

[141]  D. Liberzon,et al.  Observer-based quantized output feedback control of nonlinear systems , 2007, 2007 Mediterranean Conference on Control & Automation.

[142]  Eduardo D. Sontag,et al.  Input-Output-to-State Stability , 2001, SIAM J. Control. Optim..

[143]  K. Gu Stability and Stabilization of Infinite Dimensional Systems with Applications , 1999 .

[144]  F. Wirth,et al.  Design of saturated controls for an unstable parabolic PDE , 2019, IFAC-PapersOnLine.

[145]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .

[146]  Marius Tucsnak,et al.  Well-posed systems - The LTI case and beyond , 2014, Autom..

[147]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[148]  Eduardo Sontag,et al.  Further Equivalences and Semiglobal Versions of Integral Input to State Stability , 1999, math/9908066.

[149]  Lars Grüne,et al.  COMPUTATION OF LOCAL ISS LYAPUNOV FUNCTIONS WITH LOW GAINS VIA LINEAR PROGRAMMING , 2015 .

[150]  Arjan van der Schaft,et al.  Port-Hamiltonian Systems Theory: An Introductory Overview , 2014, Found. Trends Syst. Control..

[151]  Miroslav Krstic,et al.  PDE Boundary Control for Flexible Articulated Wings on a Robotic Aircraft , 2013, IEEE Transactions on Robotics.

[152]  Hans Zwart,et al.  Boundary Control Systems , 2020, Introduction to Infinite-Dimensional Systems Theory.

[153]  Iasson Karafyllis,et al.  ISS with Respect to Boundary Disturbances for 1-D Parabolic PDEs , 2015, IEEE Transactions on Automatic Control.

[154]  M. Kreĭn,et al.  Linear operators leaving invariant a cone in a Banach space , 1950 .

[155]  Ruth F. Curtain,et al.  Robust stabilization of infinite dimensional systems by finite dimensional controllers , 1986 .

[156]  M. Krstić,et al.  Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation , 2001 .

[157]  Pierdomenico Pepe,et al.  Is a point-wise dissipation rate enough to show ISS for time-delay systems? , 2017 .

[158]  C. Prieur,et al.  Stabilization of Linear Hyperbolic Systems of Balance Laws with Measurement Errors , 2018 .

[159]  Sophie Tarbouriech,et al.  Stabilization of boundary controlled hyperbolic PDEs via Lyapunov-based event triggered sampling and quantization , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[160]  Fabian R. Wirth,et al.  Characterizations of Input-to-State Stability for Infinite-Dimensional Systems , 2017, IEEE Transactions on Automatic Control.

[161]  Delphine Bresch-Pietri,et al.  Robustness to In-Domain Viscous Damping of a Collocated Boundary Adaptive Feedback Law for an Antidamped Boundary Wave PDE , 2019, IEEE Transactions on Automatic Control.

[162]  Jonas Gloeckner,et al.  Impulsive Differential Equations , 2016 .

[163]  Christophe Prieur,et al.  Global Stabilization of a Korteweg-De Vries Equation With Saturating Distributed Control , 2016, SIAM J. Control. Optim..

[164]  Cong-Ran Zhao,et al.  Output Feedback Stabilization Using Small-Gain Method and Reduced-Order Observer for Stochastic Nonlinear Systems , 2013, IEEE Transactions on Automatic Control.

[165]  Hiroshi Matano,et al.  Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations , 1989 .

[166]  G. Sallet,et al.  Exponential Stability and Transfer Functions of Processes Governed by Symmetric Hyperbolic Systems , 2002 .

[167]  R. Shorten,et al.  An LMI Condition for the Robustness of Constant-Delay Linear Predictor Feedback with Respect to Uncertain Time-Varying Input Delays. , 2019 .

[168]  Zhong-Ping Jiang,et al.  Small-gain theorem for a wide class of feedback systems with control applications , 2007, 2007 European Control Conference (ECC).

[169]  Yury Orlov,et al.  On the ISS properties of a class of parabolic DPS' with discontinuous control using sampled-in-space sensing and actuation , 2017, Autom..

[170]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[172]  F. Mazenc,et al.  Strict Lyapunov functions for semilinear parabolic partial differential equations , 2011 .

[173]  Peter Kuster,et al.  Nonlinear And Adaptive Control Design , 2016 .

[174]  Iasson Karafyllis,et al.  Monotonicity Methods for Input-to-State Stability of Nonlinear Parabolic PDEs with Boundary Disturbances , 2017, SIAM J. Control. Optim..

[175]  Fabian R. Wirth,et al.  An ISS small gain theorem for general networks , 2007, Math. Control. Signals Syst..

[176]  I. Karafyllis,et al.  Lyapunov Theorems for Systems Described by Retarded Functional Differential Equations , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[177]  Christophe Prieur,et al.  Multi-experiment state-space identification of coupled magnetic and kinetic parameters in tokamak plasmas , 2017 .

[178]  Sergey Dashkovskiy,et al.  Stability conditions for infinite networks of nonlinear systems and their application for stabilization , 2020, Autom..

[179]  D. Salamon Infinite Dimensional Linear Systems with Unbounded Control and Observation: A Functional Analytic Approach. , 1987 .

[180]  G. Weiss,et al.  Observation and Control for Operator Semigroups , 2009 .

[181]  Christophe Prieur,et al.  Distributed Control of Coupled Inhomogeneous Diffusion in Tokamak Plasmas , 2019, IEEE Transactions on Control Systems Technology.

[182]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[183]  Fabian R. Wirth,et al.  Existence of non-coercive Lyapunov functions is equivalent to integral uniform global asymptotic stability , 2018, Math. Control. Signals Syst..

[184]  Sophie Tarbouriech,et al.  Input-to-state stabilization in H1-norm for boundary controlled linear hyperbolic PDEs with application to quantized control , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[185]  Christophe Prieur,et al.  Lyapunov-based distributed control of the safety-factor profile in a tokamak plasma , 2013 .

[186]  Miroslav Krstic,et al.  Delay compensated control of the Stefan problem and robustness to delay mismatch , 2019, International Journal of Robust and Nonlinear Control.

[187]  E. Reutzel,et al.  Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti–6Al–4V , 2015 .

[188]  D.L. Elliott,et al.  Feedback systems: Input-output properties , 1976, Proceedings of the IEEE.

[189]  C. Bruni,et al.  Bilinear systems: An appealing class of "nearly linear" systems in theory and applications , 1974 .

[190]  Sergey Dashkovskiy,et al.  Decentralized Stabilization of Infinite Networks of Systems with Nonlinear Dynamics and Uncontrollable Linearization , 2017 .

[191]  Yuan Wang,et al.  On Lyapunov-Krasovskii Characterizations of Input-to-Output Stability , 2017 .

[192]  Eduardo Sontag,et al.  Notions of input to output stability , 1999, Systems & Control Letters.

[193]  Antoine Chaillet,et al.  Robust stabilization of delayed neural fields with partial measurement and actuation , 2017, Autom..

[194]  Jonathan R. Partington,et al.  Infinite-Dimensional Input-to-State Stability and Orlicz Spaces , 2016, SIAM J. Control. Optim..

[195]  Fabian R. Wirth,et al.  Small gain theorems for large scale systems and construction of ISS Lyapunov functions , 2009, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[196]  George Weiss,et al.  Admissibility of unbounded control operators , 1989 .

[197]  Andrii Mironchenko Local input-to-state stability: Characterizations and counterexamples , 2016, Syst. Control. Lett..

[198]  David Angeli,et al.  A characterization of integral input-to-state stability , 2000, IEEE Trans. Autom. Control..

[199]  Robert Shorten,et al.  ISS Property with Respect to Boundary Disturbances for a Class of Riesz-Spectral Boundary Control Systems , 2019, Autom..

[200]  Hiroshi Ito,et al.  Construction of Lyapunov Functions for Interconnected Parabolic Systems: An iISS Approach , 2014, SIAM J. Control. Optim..

[201]  Hans Zwart,et al.  Stabilization of port-Hamiltonian systems by nonlinear boundary control in the presence of disturbances , 2018, ESAIM: Control, Optimisation and Calculus of Variations.

[202]  J. L. Massera Contributions to Stability Theory , 1956 .

[203]  D. Russell Controllability and Stabilizability Theory for Linear Partial Differential Equations: Recent Progress and Open Questions , 1978 .

[204]  Fabian R. Wirth,et al.  Non-coercive Lyapunov functions for infinite-dimensional systems , 2016, Journal of Differential Equations.

[205]  Vladimir L. Kharitonov,et al.  Stability of Time-Delay Systems , 2003, Control Engineering.

[206]  Emilia Fridman,et al.  Distributed event-triggered control of diffusion semilinear PDEs , 2016, Autom..

[207]  Miroslav Krstic,et al.  Control and State Estimation of the One-Phase Stefan Problem via Backstepping Design , 2017, IEEE Transactions on Automatic Control.

[208]  Emilia Fridman,et al.  Wirtinger-like Lyapunov-Krasovskii functionals for discrete-time delay systems , 2018, IMA J. Math. Control. Inf..

[209]  Fabio Morbidi,et al.  Grenoble Traffic Lab: An Experimental Platform for Advanced Traffic Monitoring and Forecasting [Applications of Control] , 2015, IEEE Control Systems.

[210]  Robert Shorten,et al.  Boundary feedback stabilization of a reaction-diffusion equation with Robin boundary conditions and state-delay , 2020, Autom..

[211]  Zhong-Ping Jiang,et al.  A nonlinear small-gain theorem for large-scale time delay systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[212]  P. L. Sachdev,et al.  Nonlinear Diffusive Waves , 1987 .

[213]  Pierdomenico Pepe On Liapunov-Krasovskii functionals under Carathéodory conditions , 2007, Autom..

[214]  Björn S. Rüffer Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean n-space , 2010 .

[215]  Murat Arcak,et al.  Constructive nonlinear control: a historical perspective , 2001, Autom..

[216]  Yuandan Lin,et al.  On input-to-state stability for time varying nonlinear systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[217]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[218]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[219]  Majid Zamani,et al.  Small-gain theorem for stability, cooperative control and distributed observation of infinite networks , 2020, 2002.07085.

[220]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[221]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[222]  Eduardo D. Sontag,et al.  Input to state stability and allied system properties , 2011 .

[223]  Piotr Grabowski Admissibility of observation functionals , 1995 .

[224]  David Angeli,et al.  Integral Input to State Stable systems in cascade , 2008, Syst. Control. Lett..

[225]  Murat Arcak,et al.  Networks of Dissipative Systems: Compositional Certification of Stability, Performance, and Safety , 2016 .

[226]  Yacine Chitour,et al.  Stability Analysis of Dissipative Systems Subject to Nonlinear Damping via Lyapunov Techniques , 2018, IEEE Transactions on Automatic Control.

[227]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[228]  W. Wonham,et al.  Topics in mathematical system theory , 1972, IEEE Transactions on Automatic Control.

[229]  Zhong-Ping Jiang,et al.  A new small‐gain theorem with an application to the stabilization of the chemostat , 2012 .

[230]  Mario Sigalotti,et al.  Converse Lyapunov-Krasovskii theorems for uncertain retarded differential equations , 2015, Autom..

[231]  Chaohong Cai,et al.  Characterizations of input-to-state stability for hybrid systems , 2009, Syst. Control. Lett..

[232]  Majid Zamani,et al.  A Lyapunov-Based Small-Gain Theorem for Infinite Networks , 2019, IEEE Transactions on Automatic Control.

[233]  Alexandre M. Bayen,et al.  Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment , 2009 .

[234]  Jochen Schmid,et al.  Weak input-to-state stability: characterizations and counterexamples , 2018, Mathematics of Control, Signals, and Systems.

[235]  Iasson Karafyllis,et al.  Event-triggered boundary control of constant-parameter reaction-diffusion PDEs: a small-gain approach , 2019, 2020 American Control Conference (ACC).

[236]  Isabelle Queinnec,et al.  Stability Analysis and Stabilization of Systems With Input Backlash , 2014, IEEE Transactions on Automatic Control.

[237]  Nicolas Marchand,et al.  Event-based control of linear hyperbolic systems of conservation laws , 2016, Autom..

[238]  A. Teel Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem , 1998, IEEE Trans. Autom. Control..