Quantum-Dot Spin-State Preparation with Near-Unity Fidelity

We have demonstrated laser cooling of a single electron spin trapped in a semiconductor quantum dot. Optical coupling of electronic spin states was achieved using resonant excitation of the charged quantum dot (trion) transitions along with the heavy-light hole mixing, which leads to weak yet finite rates for spin-flip Raman scattering. With this mechanism, the electron spin can be cooled from 4.2 to 0.020 kelvin, as confirmed by the strength of the induced Pauli blockade of the trion absorption. Within the framework of quantum information processing, this corresponds to a spin-state preparation with a fidelity exceeding 99.8%.

[1]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[2]  Ren-Bao Liu,et al.  Stimulated and spontaneous optical generation of electron spin coherence in charged GaAs quantum dots. , 2005, Physical review letters.

[3]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[4]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[5]  P. Zoller,et al.  Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence , 2003, quant-ph/0304044.

[6]  Peter Michler,et al.  Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure , 2001 .

[7]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[8]  A. Kastler,et al.  Gréation optique d'une inégalité de population entre les sous-niveaux Zeeman de l'état fondamental des atomes , 1952 .

[9]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[10]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[11]  Hansen,et al.  Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. , 1994, Physical review letters.

[12]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[13]  K. Karrai,et al.  Optical emission from a charge-tunable quantum ring , 2000, Nature.

[14]  A. Badolato,et al.  Spin-selective optical absorption of singly charged excitons in a quantum dot , 2005 .

[15]  A. Zrenner,et al.  Coherent properties of a two-level system based on a quantum-dot photodiode , 2002, Nature.

[16]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[17]  A Lemaître,et al.  Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity. , 2004, Physical review letters.

[18]  P. Petroff,et al.  Stark-shift modulation absorption spectroscopy of single quantum dots , 2003 .

[19]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[20]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[21]  B. Gerardot,et al.  Voltage control of the spin dynamics of an exciton in a semiconductor quantum dot. , 2005, Physical review letters.

[22]  A. Kiraz,et al.  Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing , 2003, quant-ph/0308117.

[23]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[24]  L. Vandersypen,et al.  Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. , 2004, Physical Review Letters.