Mesoscopic modeling of Li insertion in phase-separating electrode materials: application to lithium iron phosphate.

A simple mesoscopic model is presented which accounts for the inhomogeneity of physical properties and bi-stable nature of phase-change insertion materials used in battery electrodes. The model does not include any geometric detail of the active material and discretizes the total active material domain into meso-scale units featuring basic thermodynamic (non-monotonic equilibrium potential as a function of Li content) and kinetic (insertion-de-insertion resistance) properties. With only these two factors incorporated, the model is able to simultaneously capture unique phenomena including the memory effect observed in lithium iron phosphate electrodes. The analysis offers a new physical insight into modeling of phase-change active materials which are of special interest for use in high power Li-ion batteries.

[1]  Karen E. Thomas-Alyea Modeling Resistive-Reactant and Phase-Change Materials in Battery Electrodes , 2008 .

[2]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[3]  Yuki Yamada,et al.  Kinetics of Nucleation and Growth in Two-Phase Electrochemical Reaction of LixFePO4 , 2012 .

[4]  M. Safari,et al.  Mathematical Modeling of Lithium Iron Phosphate Electrode: Galvanostatic Charge/Discharge and Path Dependence , 2011 .

[5]  Jeff Wolfenstine,et al.  Kinetic Study of the Electrochemical FePO 4 to LiFePO 4 Phase Transition , 2007 .

[6]  Charles Delacourt,et al.  Study of the LiFePO4/FePO4 Two-Phase System by High-Resolution Electron Energy Loss Spectroscopy , 2006 .

[7]  Michael Herrmann,et al.  Hysteresis and phase transition in many-particle storage systems , 2011 .

[8]  H. Munakata,et al.  Evaluation of real performance of LiFePO4 by using single particle technique , 2012 .

[9]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[10]  Steven Dargaville,et al.  The persistence of phase-separation in LiFePO4 with two-dimensional Li+ transport : the Cahn-Hilliard-reaction equation and the role of defects , 2013 .

[11]  Masao Yonemura,et al.  Room-temperature miscibility gap in LixFePO4 , 2006, Nature materials.

[12]  Venkat Srinivasan,et al.  Existence of path-dependence in the LiFePO4 electrode , 2006 .

[13]  Karena W. Chapman,et al.  Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes , 2014, Science.

[14]  Kyle R Fenton,et al.  Intercalation pathway in many-particle LiFePO4 electrode revealed by nanoscale state-of-charge mapping. , 2013, Nano letters.

[15]  Taeyoung Han,et al.  Full-Range Simulation of a Commercial LiFePO4 Electrode Accounting for Bulk and Surface Effects: A Comparative Analysis , 2014 .

[16]  A. H. Thompson Electrochemical Potential Spectroscopy: A New Electrochemical Measurement , 1979 .

[17]  Martin Z. Bazant,et al.  Nonequilibrium Thermodynamics of Porous Electrodes , 2012, 1204.2934.

[18]  G. Liang,et al.  Ultrafast charging of LiFePO4 with gaseous oxidants under ambient conditions , 2013 .

[19]  I. Müller,et al.  A STUDY OF EQUILIBRIA OF INTERCONNECTED BALLOONS , 1982 .

[20]  Dane Morgan,et al.  Li Conductivity in Li x MPO 4 ( M = Mn , Fe , Co , Ni ) Olivine Materials , 2004 .

[21]  T. Farrell,et al.  A comparison of mathematical models for phase-change in high-rate LiFePO4 cathodes , 2013 .

[22]  Karim Zaghib,et al.  Understanding Rate-Limiting Mechanisms in LiFePO4 Cathodes for Li-Ion Batteries , 2011 .

[23]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[24]  Y. Orikasa,et al.  Direct observation of a metastable crystal phase of Li(x)FePO4 under electrochemical phase transition. , 2013, Journal of the American Chemical Society.

[25]  Pedro E. Arce,et al.  A Discharge Model for Phase Transformation Electrodes: Formulation, Experimental Validation, and Analysis , 2007 .

[26]  Chunsheng Wang,et al.  Strain accommodation and potential hysteresis of LiFePO4 cathodes during lithium ion insertion/extraction , 2011 .

[27]  Jonathan P. Wright,et al.  Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. , 2014, Nano letters.

[28]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .

[29]  Gerbrand Ceder,et al.  Electrochemical modeling of intercalation processes with phase field models , 2004 .

[30]  Pedro E. Arce,et al.  Discharge Model for LiFePO4 Accounting for the Solid Solution Range , 2008 .

[31]  Taeyoung Han,et al.  Simulation of lithium iron phosphate lithiation/delithiation: Limitations of the core–shell model , 2014 .

[32]  G. Ceder,et al.  Architecture Dependence on the Dynamics of Nano-LiFePO4 Electrodes , 2014 .

[33]  Daniel A. Cogswell,et al.  Suppression of phase separation in LiFePO₄ nanoparticles during battery discharge. , 2011, Nano letters.

[34]  T. R. Jow,et al.  Analysis of the FePO4 to LiFePO4 phase transition , 2008 .

[35]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[36]  Daniel A. Cogswell,et al.  Theory of coherent nucleation in phase-separating nanoparticles. , 2013, Nano letters.

[37]  W. Craig Carter,et al.  Overpotential-Dependent Phase Transformation Pathways in Lithium Iron Phosphate Battery Electrodes , 2010 .

[38]  Daniel A. Cogswell,et al.  Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. , 2011, ACS nano.

[39]  A. Boulineau,et al.  Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction. , 2013, ACS nano.

[40]  Rahul Malik,et al.  A Critical Review of the Li Insertion Mechanisms in LiFePO4 Electrodes , 2013 .

[41]  D. Aurbach,et al.  Collective Phase Transition Dynamics in Microarray Composite LixFePO4 Electrodes Tracked by in Situ Electrochemical Quartz Crystal Admittance , 2013 .

[42]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[43]  Thomas J. Richardson,et al.  Electron Microscopy Study of the LiFePO4 to FePO4 Phase Transition , 2006 .

[44]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[45]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[46]  R. Huggins,et al.  Determination of the Kinetic Parameters of Mixed‐Conducting Electrodes and Application to the System Li3Sb , 1977 .

[47]  Steven Dargaville,et al.  Predicting Active Material Utilization in LiFePO4 Electrodes Using a Multiscale Mathematical Model , 2010 .

[48]  Damian Burch,et al.  Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. , 2009, Nano letters.

[49]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[50]  Martin Z. Bazant,et al.  Intercalation dynamics in rechargeable battery materials : General theory and phase-transformation waves in LiFePO4 , 2008 .

[51]  Mohammadhosein Safari,et al.  Analysis of lithium deinsertion/insertion in LiyFePO4 with a simple mathematical model , 2010 .

[52]  Ming Tang,et al.  Model for the Particle Size, Overpotential, and Strain Dependence of Phase Transition Pathways in Storage Electrodes: Application to Nanoscale Olivines , 2009 .

[53]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[54]  Charles Delacourt,et al.  Mathematical Modeling of Commercial LiFePO4 Electrodes Based on Variable Solid-State Diffusivity , 2011 .

[55]  C. Delmas,et al.  Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. , 2008, Nature materials.

[56]  P. Novák,et al.  Memory effect in a lithium-ion battery. , 2013, Nature materials.

[57]  E. F. Rauch,et al.  Confirmation of the domino-cascade model by lifepo4/fepo 4 precession electron diffraction , 2011 .