Numerical Methods for Parameter Estimation in Nonlinear Differential Algebraic Equations

Nonlinear Differential Algebraic Equations (DAEs) are an important class of models for dynamic processes. To establish models that describe the process behavior in a quantitatvely correct way, often parameters in the model have to be determined from observations or measurements of the process. This paper reviews numerical methods for parameter estimation in DAEs. In particular the so-called boundary value problem approach and a versatile realisation, the multiple shooting method for parameter estimation, are discussed. Several applications are given to show the numerical performance and the wide applicability of the methods. A difficulty that occurs in practical applications is that the experiments performed to obtain measurements for parameter estimation are expensive, but nevertheless do not guarantee satisfactory parameter accuracy. The optimization of one or more dynamic experiments in order to maximize the accuracy of the results of a parameter estimation subject to cost and further technical inequality constraints leads to very complex non-standard optimal control problems. Newly developed methods for design of optimal experiments for nonlinear processes are briefly discussed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  Rolf Rannacher,et al.  Modeling, Simulation and Optimization of Complex Processes, Proceedings of the International Conference on High Performance Scientific Computing, March 10-14, 2003, Hanoi, Vietnam , 2005, HPSC.

[2]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[3]  Hans Bock,et al.  Identification of Rate Constants in Bistable Chemical Reactions , 1983 .

[4]  Irene Bauer Numerische Verfahren zur Lösung von Anfangswertaufgaben und zur Generierung von ersten und zweiten Ableitungen mit Anwendungen bei Optimierungsaufgaben in Chemie und Verfahrenstechnik , 1999 .

[5]  Baake,et al.  Fitting ordinary differential equations to chaotic data. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  Hans Bock,et al.  Optimal experimental design for parameter estimation in column outflow experiments , 2002 .

[7]  Stefan Körkel,et al.  Numerical Methods for Nonlinear Experimental Design , 2003, HPSC.

[8]  Stefan Körkel,et al.  Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen , 2002 .

[9]  Svetlana Prischepova,et al.  A new algorithm for minimax and l 1-norm optimization , 1998 .

[10]  F. Finocchi,et al.  Chemical Reactions and Dust Destruction in Protoplanetary Accretion Disks , 1996 .

[11]  Hans Bock,et al.  Least squares parameter estimation in chaotic differential equations , 1993 .

[12]  Hans Bock,et al.  Numerical methods for optimum experimental design in DAE systems , 2000 .

[13]  W. Murray,et al.  A Projected Lagrangian Algorithm for Nonlinear $l_1 $ Optimization , 1981 .

[14]  Marc C. Steinbach,et al.  Exploiting Invariants in the Numerical Solution of Multipoint Boundary Value Problems for DAE , 1998, SIAM J. Sci. Comput..

[15]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[16]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[17]  Reinhold von Schwerin MultiBody System SIMulation - Numerical Methods, Algorithms, and Software , 1999, Lecture Notes in Computational Science and Engineering.

[18]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[19]  Ekaterina A. Kostina The long step rule in the bounded-variable dual simplex method: Numerical experiments , 2002, Math. Methods Oper. Res..

[20]  Ekaterina Kostina,et al.  Robust Parameter Estimation in Dynamic Systems , 2004 .

[21]  Johannes P. Schlöder,et al.  On the Role of Natural Level Functions to Achieve Global Convergence for Damped Newton Methods , 1999, System Modelling and Optimization.

[22]  Johannes P. Schlöder,et al.  Modelling the fast fluorescence rise of photosynthesis , 1992 .

[23]  Uri M. Ascher,et al.  Collocation for two-point boundary value problems revisited , 1986 .

[24]  Ursula Klingmüller,et al.  Modeling the Nonlinear Dynamics of Cellular Signal Transduction , 2004, Int. J. Bifurc. Chaos.

[25]  V. Schulz,et al.  Parameter Estimation In Discontinuous Descriptor Models , 1996 .

[26]  Kaj Madsen,et al.  Combined LP and Quasi-Newton Methods for Nonlinear $l_1 $ Optimization , 1985 .

[27]  H. Bock Numerical Treatment of Inverse Problems in Chemical Reaction Kinetics , 1981 .

[28]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[29]  L. Biegler,et al.  Large‐scale DAE optimization using a simultaneous NLP formulation , 1998 .

[30]  Hans Georg Bock,et al.  Covariance Matrices for Parameter Estimates of Constrained Parameter Estimation Problems , 2007, SIAM J. Matrix Anal. Appl..

[31]  Angelika Dieses,et al.  Numerical methods for optimization problems in water flow and reactive solute transport processes of xenobiotics in soils , 2000 .

[32]  Dodge,et al.  [Wiley Series in Probability and Statistics] Alternative Methods of Regression (Birkes/Alternative) || Least-Absolute-Deviations Regression , 1993 .

[33]  P. Deuflhard,et al.  Numerical Identification of Selected Rate Constants in Large Chemical Reaction Systems , 1985 .

[34]  K. Schittkowski Data fitting in partial differential algebraic equations: some academic and industrial applications , 2004 .

[35]  Joyce Snell,et al.  6. Alternative Methods of Regression , 1996 .