Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices

[1]  James R. McKone,et al.  Ni–Mo Nanopowders for Efficient Electrochemical Hydrogen Evolution , 2013 .

[2]  Yuki Nishi,et al.  High-Efficiency Cu2O-Based Heterojunction Solar Cells Fabricated Using a Ga2O3 Thin Film as N-Type Layer , 2013 .

[3]  H. Tamura,et al.  Cyclotron resonance of electrons and of holes in cuprous oxide, Cu2O , 1976 .

[4]  Yuki Nishi,et al.  Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells , 2013 .

[5]  Brian D. Viezbicke,et al.  Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system , 2015 .

[6]  M. Grätzel,et al.  A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes , 2017 .

[7]  Jian V. Li,et al.  Atomic Layer Deposited Gallium Oxide Buffer Layer Enables 1.2 V Open‐Circuit Voltage in Cuprous Oxide Solar Cells , 2014, Advanced materials.

[8]  Zhiyi Lu,et al.  Cover Picture: A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution (ChemElectroChem 7/2014) , 2014 .

[9]  Vincent Laporte,et al.  Highly active oxide photocathode for photoelectrochemical water reduction. , 2011, Nature materials.

[10]  Xiaolong Du,et al.  Engineering of optically defect free Cu2O enabling exciton luminescence at room temperature , 2013 .

[11]  Changli Li,et al.  Positive onset potential and stability of Cu2O-based photocathodes in water splitting by atomic layer deposition of a Ga2O3 buffer layer , 2015 .

[12]  N. Lewis,et al.  Excitonic Effects in Emerging Photovoltaic Materials: A Case Study in Cu2O , 2017 .

[13]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[14]  V. Jović,et al.  Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution , 2008 .

[15]  Peng Zhang,et al.  Electrodeposition of Cu2O Nanostructure on 3D Cu Micro-Cone Arrays as Photocathode for Photoelectrochemical Water Reduction , 2016 .

[16]  Changli Li,et al.  A novel method to synthesize highly photoactive Cu2O microcrystalline films for use in photoelectrochemical cells. , 2014, ACS applied materials & interfaces.

[17]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[18]  Takayuki Ito,et al.  Detailed examination of relaxation processes of excitons in photoluminescence spectra of Cu2O , 1997 .

[19]  Ib Chorkendorff,et al.  Using TiO2 as a conductive protective layer for photocathodic H2 evolution. , 2013, Journal of the American Chemical Society.

[20]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[21]  Licheng Sun,et al.  An iron-based thin film as a highly efficient catalyst for electrochemical water oxidation in a carbonate electrolyte. , 2016, Chemical communications.

[22]  J. S. Lee,et al.  Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting , 2016, Nature Communications.

[23]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[24]  Takashi Hisatomi,et al.  Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration , 2016, Nature Energy.

[25]  E. A. Kraut,et al.  Precise Determination of the Valence-Band Edge in X-Ray Photoemission Spectra: Application to Measurement of Semiconductor Interface Potentials , 1980 .

[26]  Zhiyi Lu,et al.  A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution , 2014 .

[27]  M. Grätzel,et al.  Transparent Cuprous Oxide Photocathode Enabling a Stacked Tandem Cell for Unbiased Water Splitting , 2015 .

[28]  João Lúcio de Azevedo,et al.  Ruthenium Oxide Hydrogen Evolution Catalysis on Composite Cuprous Oxide Water‐Splitting Photocathodes , 2014 .

[29]  Boštjan Genorio,et al.  Design principles for hydrogen evolution reaction catalyst materials , 2016 .

[30]  Youhong Tang,et al.  Three‐Dimensional Smart Catalyst Electrode for Oxygen Evolution Reaction , 2015 .

[31]  K. Sivula,et al.  Semiconducting materials for photoelectrochemical energy conversion , 2016 .

[32]  C. Sousa,et al.  On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing , 2014 .

[33]  Nathan S. Lewis,et al.  Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes , 2011 .

[34]  Dong Suk Kim,et al.  Wireless Solar Water Splitting Device with Robust Cobalt-Catalyzed, Dual-Doped BiVO4 Photoanode and Perovskite Solar Cell in Tandem: A Dual Absorber Artificial Leaf. , 2015, ACS nano.

[35]  Tengfei Jiang,et al.  Copper borate as a photocathode in p-type dye-sensitized solar cells , 2016 .

[36]  Xuhui Sun,et al.  Depth-reduction induced low onset potential of hematite photoanodes for solar water oxidation , 2015 .

[37]  Michael Grätzel,et al.  Cu2O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting. , 2016, Nano letters.

[38]  R. Gordon,et al.  Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics , 2014 .

[39]  Michael Grätzel,et al.  Photoelectrochemical hydrogen production in alkaline solutions using Cu2O coated with earth-abundant hydrogen evolution catalysts. , 2014, Angewandte Chemie.