Biological switches and clocks

To introduce this special issue on biological switches and clocks, we review the historical development of mathematical models of bistability and oscillations in chemical reaction networks. In the 1960s and 1970s, these models were limited to well-studied biochemical examples, such as glycolytic oscillations and cyclic AMP signalling. After the molecular genetics revolution of the 1980s, the field of molecular cell biology was thrown wide open to mathematical modellers. We review recent advances in modelling the gene–protein interaction networks that control circadian rhythms, cell cycle progression, signal processing and the design of synthetic gene networks.

[1]  Wonhee Jang,et al.  Combining experiments and modelling to understand size regulation in Dictyostelium discoideum , 2008, Journal of The Royal Society Interface.

[2]  Stefan Bornholdt,et al.  Boolean network models of cellular regulation: prospects and limitations , 2008, Journal of The Royal Society Interface.

[3]  D A Rand,et al.  Mapping global sensitivity of cellular network dynamics: sensitivity heat maps and a global summation law , 2008, Journal of The Royal Society Interface.

[4]  Albert Goldbeter,et al.  Stochastic modelling of nucleocytoplasmic oscillations of the transcription factor Msn2 in yeast , 2008, Journal of The Royal Society Interface.

[5]  Stephanie R. Taylor,et al.  Synchrony and entrainment properties of robust circadian oscillators , 2008, Journal of The Royal Society Interface.

[6]  Orkun S. Soyer,et al.  Adaptive dynamics with a single two-state protein , 2008, Journal of The Royal Society Interface.

[7]  Michael C Mackey,et al.  Quantitative approaches to the study of bistability in the lac operon of Escherichia coli , 2008, Journal of The Royal Society Interface.

[8]  Réka Albert,et al.  Studying the effect of cell division on expression patterns of the segment polarity genes , 2008, Journal of The Royal Society Interface.

[9]  Daniel B. Forger,et al.  Rate constants rather than biochemical mechanism determine behaviour of genetic clocks , 2008, Journal of The Royal Society Interface.

[10]  Jerome T. Mettetal,et al.  Stochastic switching as a survival strategy in fluctuating environments , 2008, Nature Genetics.

[11]  Jerome T. Mettetal,et al.  The Frequency Dependence of Osmo-Adaptation in Saccharomyces cerevisiae , 2008, Science.

[12]  John J. Tyson,et al.  A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells , 2007, PLoS Comput. Biol..

[13]  M. L. Simpson,et al.  Transient-mediated fate determination in a transcriptional circuit of HIV , 2007, Nature Genetics.

[14]  Timothy C Elston,et al.  Mathematical and computational analysis of adaptation via feedback inhibition in signal transduction pathways. , 2007, Biophysical journal.

[15]  Denis Thieffry,et al.  Dynamical modeling of syncytial mitotic cycles in Drosophila embryos , 2007, Molecular systems biology.

[16]  Réka Albert,et al.  Modeling Systems-Level Regulation of Host Immune Responses , 2007, PLoS Comput. Biol..

[17]  S. Bornholdt,et al.  Boolean Network Model Predicts Cell Cycle Sequence of Fission Yeast , 2007, PloS one.

[18]  Martin Egli,et al.  Elucidating the Ticking of an In Vitro Circadian Clockwork , 2007, PLoS biology.

[19]  Jeroen S. van Zon,et al.  An allosteric model of circadian KaiC phosphorylation , 2007, Proceedings of the National Academy of Sciences.

[20]  John J Tyson,et al.  A proposal for robust temperature compensation of circadian rhythms , 2007, Proceedings of the National Academy of Sciences.

[21]  Herbert M Sauro,et al.  Oscillatory dynamics arising from competitive inhibition and multisite phosphorylation. , 2007, Journal of theoretical biology.

[22]  Leor S Weinberger,et al.  An HIV Feedback Resistor: Auto-Regulatory Circuit Deactivator and Noise Buffer , 2006, PLoS biology.

[23]  Francis J. Doyle,et al.  Circadian phase entrainment via nonlinear model predictive control , 2006 .

[24]  Aurélien Naldi,et al.  Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle , 2006, ISMB.

[25]  Albert Goldbeter,et al.  Circadian rhythms and molecular noise. , 2006, Chaos.

[26]  Attila Csikász-Nagy,et al.  Analysis of a generic model of eukaryotic cell-cycle regulation. , 2006, Biophysical journal.

[27]  Peter Ruoff,et al.  Circadian Rhythmicity by Autocatalysis , 2006, PLoS Comput. Biol..

[28]  Bela Novak,et al.  Downregulation of PP2ACdc55 Phosphatase by Separase Initiates Mitotic Exit in Budding Yeast , 2006, Cell.

[29]  Paul Brazhnik,et al.  Cell Cycle Control in Bacteria and Yeast: A Case of Convergent Evolution? , 2006, Cell cycle.

[30]  Monica L. Skoge,et al.  Chemosensing in Escherichia coli: two regimes of two-state receptors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Eldon Emberly,et al.  Hourglass model for a protein-based circadian oscillator. , 2006, Physical review letters.

[32]  Peter Ruoff,et al.  The relationship between FRQ-protein stability and temperature compensation in the Neurospora circadian clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Peter Ruoff,et al.  PER/TIM-mediated amplification, gene dosage effects and temperature compensation in an interlocking-feedback loop model of the Drosophila circadian clock. , 2005, Journal of theoretical biology.

[34]  J. Gunawardena Multisite protein phosphorylation makes a good threshold but can be a poor switch. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  James E. Ferrell,et al.  Systems-Level Dissection of the Cell-Cycle Oscillator: Bypassing Positive Feedback Produces Damped Oscillations , 2005, Cell.

[36]  Ya Jia,et al.  Light-noise-induced suprathreshold circadian oscillations and coherent resonance in Drosophila. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Paul E. Brown,et al.  Extension of a genetic network model by iterative experimentation and mathematical analysis , 2005, Molecular systems biology.

[38]  Katherine C. Chen,et al.  Quantitative characterization of a mitotic cyclin threshold regulating exit from mitosis. , 2005, Molecular biology of the cell.

[39]  Y. Iwasa,et al.  Temperature compensation in circadian clock models. , 2005, Journal of theoretical biology.

[40]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.

[41]  Daniel B. Forger,et al.  Stochastic simulation of the mammalian circadian clock. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D A Rand,et al.  Design principles underlying circadian clocks , 2004, Journal of The Royal Society Interface.

[43]  J. Stelling,et al.  Robustness properties of circadian clock architectures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Zhilin Qu,et al.  Coordination of cell growth and cell division: a mathematical modeling study , 2004, Journal of Cell Science.

[45]  Katherine C. Chen,et al.  Integrative analysis of cell cycle control in budding yeast. , 2004, Molecular biology of the cell.

[46]  M. Thattai,et al.  Stochastic Gene Expression in Fluctuating Environments , 2004, Genetics.

[47]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.

[48]  Daniel B. Forger,et al.  A detailed predictive model of the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[51]  A. Goldbeter,et al.  Toward a detailed computational model for the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  F. Cross,et al.  Two redundant oscillatory mechanisms in the yeast cell cycle. , 2003, Developmental cell.

[53]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[54]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[55]  A. Goldbeter Computational approaches to cellular rhythms , 2002, Nature.

[56]  Ertugrul M. Ozbudak,et al.  Regulation of noise in the expression of a single gene , 2002, Nature Genetics.

[57]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[58]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[59]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[60]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[61]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[62]  Scott E Fraser,et al.  The Molecular Metamorphosis of Experimental Embryology , 2000, Cell.

[63]  P. Nurse A Long Twentieth Century of the Cell Cycle and Beyond , 2000, Cell.

[64]  D. Butler Computing 2010: from black holes to biology , 1999, Nature.

[65]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[66]  B. Aguda,et al.  The kinetic origins of the restriction point in the mammalian cell cycle , 1999, Cell proliferation.

[67]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[68]  David H. Sharp,et al.  Prediction of mutant expression patterns using gene circuits. , 1998, Bio Systems.

[69]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[70]  Kurt W Kohn,et al.  Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition , 1998, Oncogene.

[71]  Peter Ruoff,et al.  The Temperature-Compensated Goodwin Model Simulates Many Circadian Clock Properties , 1996 .

[72]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[73]  A. Goldbeter A model for circadian oscillations in the Drosophila period protein (PER) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[74]  M. Obeyesekere,et al.  A model of the G1 phase of the cell cycle incorporating cyclin E/cdk2 complex and retinoblastoma protein. , 1995, Oncogene.

[75]  H. McAdams,et al.  Circuit simulation of genetic networks. , 1995, Science.

[76]  J. Tyson,et al.  Numerical analysis of a comprehensive model of M-phase control in Xenopus oocyte extracts and intact embryos. , 1993, Journal of cell science.

[77]  D. Bray,et al.  Computer simulation of the phosphorylation cascade controlling bacterial chemotaxis. , 1993, Molecular biology of the cell.

[78]  Peter Ruoff,et al.  Introducing temperature‐compensation in any reaction kinetic oscillator model , 1992 .

[79]  A. Winfree The geometry of biological time , 1991 .

[80]  H. Kreuzer,et al.  Theory of oscillating reactions , 1990 .

[81]  R. J. Field,et al.  Oscillations and Traveling Waves in Chemical Systems , 1985 .

[82]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[83]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[84]  A Goldbeter,et al.  Dissipative structures for an allosteric model. Application to glycolytic oscillations. , 1972, Biophysical journal.

[85]  F. Schlögl Chemical reaction models for non-equilibrium phase transitions , 1972 .

[86]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[87]  J. Griffith Mathematics of cellular control processes. II. Positive feedback to one gene. , 1968, Journal of theoretical biology.

[88]  E. Sel'kov,et al.  Self-oscillations in glycolysis. 1. A simple kinetic model. , 1968, European journal of biochemistry.

[89]  I. Prigogine,et al.  Symmetry Breaking Instabilities in Dissipative Systems. II , 1968 .

[90]  J. Higgins The Theory of Oscillating Reactions - Kinetics Symposium , 1967 .

[91]  W. Donachie,et al.  Repression and the Control of Cyclic Enzyme Synthesis in Bacillus subtilis , 1966, Nature.

[92]  J. Changeux,et al.  ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. , 1965, Journal of molecular biology.

[93]  B Hess,et al.  DPNH oscillations in a cell-free extract of S. carlsbergensis. , 1964, Biochemical and biophysical research communications.

[94]  A. Ghosh,et al.  Oscillations of glycolytic intermediates in yeast cells. , 1964, Biochemical and biophysical research communications.

[95]  J. Monod,et al.  Genetic regulatory mechanisms in the synthesis of proteins. , 1961, Journal of molecular biology.

[96]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[97]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[98]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.

[99]  F. Cross,et al.  Testing a mathematical model of the yeast cell cycle. , 2002, Molecular biology of the cell.

[100]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[101]  Katherine C. Chen,et al.  Kinetic analysis of a molecular model of the budding yeast cell cycle. , 2000, Molecular biology of the cell.

[102]  David H. Sharp,et al.  Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback. , 1995, The Journal of experimental zoology.

[103]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[104]  L. Glass Classification of biological networks by their qualitative dynamics. , 1975, Journal of theoretical biology.

[105]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[106]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[107]  F. Weiling Lotka, A. J.: Elements of Mathematical Biology. Dover Publications Inc., New‐York 1956; XXX + 465 S., 72 Abb., 36 Tabellen und 4 Übersichtstabellen im Anhang, Preis $ 2,45 , 1965 .

[108]  H. E. Umbarger Feedback control by endproduct inhibition. , 1961, Cold Spring Harbor symposia on quantitative biology.

[109]  Umbarger He Feedback control by endproduct inhibition. , 1961 .

[110]  D. A. Rand Mapping Global Sensitivity of Cellular Network Dynamics: Sensitivity Heat Maps and a Global Summation Law , 2022 .