Gene replacement therapy for retinal CNG channelopathies

[1]  S. Petersen-Jones,et al.  Large Animal Model of Autosomal Recessive RP due to a CNGB1 gene mutation , 2013 .

[2]  W. Hauswirth,et al.  Transient photoreceptor deconstruction by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia. , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  W. Hauswirth,et al.  A comprehensive review of retinal gene therapy. , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[4]  Alexander Sumaroka,et al.  Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement , 2013, Proceedings of the National Academy of Sciences.

[5]  Jianhua Xu,et al.  Detection of cGMP in the degenerating retina. , 2013, Methods in molecular biology.

[6]  N. Tanimoto,et al.  Gene therapy restores vision and delays degeneration in the CNGB1(-/-) mouse model of retinitis pigmentosa. , 2012, Human molecular genetics.

[7]  W. Hauswirth,et al.  AAV-Mediated Cone Rescue in a Naturally Occurring Mouse Model of CNGA3-Achromatopsia , 2012, PloS one.

[8]  William J Feuer,et al.  Gene therapy for leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. , 2012, Archives of ophthalmology.

[9]  L. Vandenberghe,et al.  Novel adeno-associated viral vectors for retinal gene therapy , 2011, Gene Therapy.

[10]  A. Dubra,et al.  Photoreceptor structure and function in patients with congenital achromatopsia. , 2011, Investigative ophthalmology & visual science.

[11]  W. N. Zagotta,et al.  Molecular mechanism for 3:1 subunit stoichiometry of rod cyclic nucleotide-gated ion channels , 2011, Nature communications.

[12]  Jianhua Xu,et al.  Early-onset, slow progression of cone photoreceptor dysfunction and degeneration in CNG channel subunit CNGB3 deficiency. , 2011, Investigative ophthalmology & visual science.

[13]  Livia S. Carvalho,et al.  Long-term and age-dependent restoration of visual function in a mouse model of CNGB3-associated achromatopsia following gene therapy , 2011, Human molecular genetics.

[14]  N. Tanimoto,et al.  Exploring Different Serotypes And Promoters In rAAV-mediated Gene Replacement Therapy Of Achromatopsia Type 2 (ACHM2) , 2011 .

[15]  M. Biel,et al.  The Glutamic Acid-Rich Protein Is a Gating Inhibitor of Cyclic Nucleotide-Gated Channels , 2011, The Journal of Neuroscience.

[16]  C. Willoughby,et al.  Molecular diagnosis for heterogeneous genetic diseases with targeted high-throughput DNA sequencing applied to retinitis pigmentosa , 2010, Journal of Medical Genetics.

[17]  N. Tanimoto,et al.  Restoration of cone vision in the CNGA3-/- mouse model of congenital complete lack of cone photoreceptor function. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[18]  E. Banin,et al.  A novel day blindness in sheep: epidemiological, behavioural, electrophysiological and histopathological studies. , 2010, Veterinary journal.

[19]  András M Komáromy,et al.  Gene therapy rescues cone function in congenital achromatopsia. , 2010, Human molecular genetics.

[20]  C. Klaver,et al.  Comprehensive analysis of the achromatopsia genes CNGA3 and CNGB3 in progressive cone dystrophy. , 2010, Ophthalmology.

[21]  E. Seroussi,et al.  A mutation in gene CNGA3 is associated with day blindness in sheep. , 2010, Genomics.

[22]  M. Biel,et al.  The Retinitis Pigmentosa Mutation c.3444+1G>A in CNGB1 Results in Skipping of Exon 32 , 2010, PloS one.

[23]  Zhijian Wu,et al.  Effect of genome size on AAV vector packaging. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[24]  H. Nakai,et al.  Characterization of genome integrity for oversized recombinant AAV vector. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[25]  D. Duan,et al.  Evidence for the Failure of Adeno-associated Virus Serotype 5 to Package a Viral Genome ≥8.2 kb. , 2010, Molecular therapy : the journal of the American Society of Gene Therapy.

[26]  W. Hauswirth,et al.  Achromatopsia as a potential candidate for gene therapy. , 2010, Advances in experimental medicine and biology.

[27]  R. Barlow,et al.  Impaired cone function and cone degeneration resulting from CNGB3 deficiency: down-regulation of CNGA3 biosynthesis as a potential mechanism. , 2009, Human molecular genetics.

[28]  C. Klaver,et al.  Genetic etiology and clinical consequences of complete and incomplete achromatopsia. , 2009, Ophthalmology.

[29]  G. Fain,et al.  Knockout of GARPs and the β-subunit of the rod cGMP-gated channel disrupts disk morphogenesis and rod outer segment structural integrity , 2009, Journal of Cell Science.

[30]  W. Hauswirth,et al.  Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. , 2008, Human gene therapy.

[31]  Edwin M Stone,et al.  Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics , 2008, Proceedings of the National Academy of Sciences.

[32]  R. Kumar‐Singh Barriers for retinal gene therapy: Separating fact from fiction , 2008, Vision Research.

[33]  Nick Tyler,et al.  Effect of gene therapy on visual function in Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[34]  Kathleen A. Marshall,et al.  Safety and efficacy of gene transfer for Leber's congenital amaurosis. , 2008, The New England journal of medicine.

[35]  E. Surace,et al.  Versatility of AAV vectors for retinal gene transfer , 2008, Vision Research.

[36]  M. Biel,et al.  Function and Dysfunction of CNG Channels: Insights from Channelopathies and Mouse Models , 2007, Molecular Neurobiology.

[37]  P. Sieving,et al.  CNGB3 achromatopsia with progressive loss of residual cone function and impaired rod-mediated function. , 2007, Investigative ophthalmology & visual science.

[38]  Dyonne T Hartong,et al.  Retinitis pigmentosa , 2009 .

[39]  Martin Biel,et al.  International Union of Pharmacology. LI. Nomenclature and Structure-Function Relationships of Cyclic Nucleotide-Regulated Channels , 2005, Pharmacological Reviews.

[40]  S. Deeb,et al.  The molecular basis of variation in human color vision , 2005, Clinical genetics.

[41]  S. Haverkamp,et al.  Impaired opsin targeting and cone photoreceptor migration in the retina of mice lacking the cyclic nucleotide-gated channel CNGA3. , 2005, Investigative ophthalmology & visual science.

[42]  P. Sieving,et al.  CNGB3 mutations account for 50% of all cases with autosomal recessive achromatopsia , 2005, European Journal of Human Genetics.

[43]  A. Kennan,et al.  Light in retinitis pigmentosa. , 2005, Trends in genetics : TIG.

[44]  K. Yau,et al.  Impaired Channel Targeting and Retinal Degeneration in Mice Lacking the Cyclic Nucleotide-Gated Channel Subunit CNGB1 , 2005, The Journal of Neuroscience.

[45]  J. Pokorny,et al.  Classification of complete and incomplete autosomal recessive achromatopsia , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[46]  T. Tahira,et al.  A homozygosity-based search for mutations in patients with autosomal recessive retinitis pigmentosa, using microsatellite markers. , 2004, Investigative ophthalmology & visual science.

[47]  W. Catterall,et al.  The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and Ionic Homeostasis , 2004, Science's STKE.

[48]  S. Haverkamp,et al.  Morphological characterization of the retina of the CNGA3(-/-)Rho(-/-) mutant mouse lacking functional cones and rods. , 2004, Investigative ophthalmology & visual science.

[49]  M. Varnum,et al.  Subunit Configuration of Heteromeric Cone Cyclic Nucleotide-Gated Channels , 2004, Neuron.

[50]  Michael Kalloniatis,et al.  Retinitis pigmentosa: understanding the clinical presentation, mechanisms and treatment options , 2004, Clinical & experimental optometry.

[51]  Darrell R. Abernethy,et al.  International Union of Pharmacology: Approaches to the Nomenclature of Voltage-Gated Ion Channels , 2003, Pharmacological Reviews.

[52]  Martin Biel,et al.  International Union of Pharmacology. XLII. Compendium of Voltage-Gated Ion Channels: Cyclic Nucleotide-Modulated Channels , 2003, Pharmacological Reviews.

[53]  M. Trudeau,et al.  Rod Cyclic Nucleotide-Gated Channels Have a Stoichiometry of Three CNGA1 Subunits and One CNGB1 Subunit , 2002, Neuron.

[54]  E. Kremmer,et al.  Subunit Stoichiometry of the CNG Channel of Rod Photoreceptors , 2002, Neuron.

[55]  K. Yau,et al.  The heteromeric cyclic nucleotide-gated channel adopts a 3A:1B stoichiometry , 2002, Nature.

[56]  E. Ostrander,et al.  Canine CNGB3 mutations establish cone degeneration as orthologous to the human achromatopsia locus ACHM3. , 2002, Human molecular genetics.

[57]  N. Bennett,et al.  Basis for Intracellular Retention of a Human Mutant of the Retinal Rod Channel a Subunit , 2002, The Journal of Membrane Biology.

[58]  U. Kaupp,et al.  Cyclic nucleotide-gated ion channels. , 2002, Physiological reviews.

[59]  B. Wissinger,et al.  Clinical features of achromatopsia in Swedish patients with defined genotypes , 2002, Ophthalmic genetics.

[60]  Lindsay T Sharpe,et al.  The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes. , 2002, Human molecular genetics.

[61]  Jean Bennett,et al.  Gene therapy restores vision in a canine model of childhood blindness , 2001, Nature Genetics.

[62]  M. Claustres,et al.  Segregation of a mutation in CNGB1 encoding the β-subunit of the rod cGMP-gated channel in a family with autosomal recessive retinitis pigmentosa , 2001, Human Genetics.

[63]  Helga Kolb,et al.  The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.

[64]  P. Sieving,et al.  Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. , 2000, Human molecular genetics.

[65]  D. Hunt,et al.  Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy , 2000, Nature Genetics.

[66]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[67]  I. Maumenee,et al.  Genetic basis of total colourblindness among the Pingelapese islanders , 2000, Nature Genetics.

[68]  C. Barnstable,et al.  Impairment of rod cGMP-gated channel alpha-subunit expression leads to photoreceptor and bipolar cell degeneration. , 2000, Investigative ophthalmology & visual science.

[69]  M. Seeliger,et al.  Selective loss of cone function in mice lacking the cyclic nucleotide-gated channel CNG3. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Jacobson,et al.  Total colourblindness is caused by mutations in the gene encoding the α-subunit of the cone photoreceptor cGMP-gated cation channel , 1998, Nature Genetics.

[71]  Oliver Sacks,et al.  The Island of the Colorblind , 1997 .

[72]  T. L. McGee,et al.  Mutations in the gene encoding the alpha subunit of the rod cGMP-gated channel in autosomal recessive retinitis pigmentosa. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Fulvio Mavilio,et al.  Gene therapy , 1993, Nature.

[74]  L. Rubin,et al.  The electroretinogram in dogs with inherited cone degeneration. , 1975, Investigative ophthalmology.

[75]  L. Rubin,et al.  Pathology of hemeralopia in the Alaskan malamute dog. , 1974, Investigative ophthalmology.

[76]  Rubin Lf Clinical features of hemeralopia in the adult Alaskan malamute. , 1971 .

[77]  Rubin Lf Hemeralopia in Alaskan Malamute pups. , 1971 .

[78]  L. Rubin Clinical features of hemeralopia in the adult Alaskan malamute. , 1971, Journal of the American Veterinary Medical Association.