Spatial and seasonal prokaryotic community dynamics in ponds of increasing salinity of Sfax solar saltern in Tunisia

[1]  R. Stepanauskas,et al.  New Abundant Microbial Groups in Aquatic Hypersaline Environments , 2011, Scientific reports.

[2]  M. Denis,et al.  Characterization of heterotrophic prokaryote subgroups in the Sfax coastal solar salterns by combining flow cytometry cell sorting and phylogenetic analysis , 2011, Extremophiles.

[3]  J. Antón,et al.  Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. , 2010, Systematic and applied microbiology.

[4]  J. Antón,et al.  Diversity of pufM genes, involved in aerobic anoxygenic photosynthesis, in the bacterial communities associated with colonial ascidians. , 2010, FEMS microbiology ecology.

[5]  Peter Salamon,et al.  Viral and microbial community dynamics in four aquatic environments , 2010, The ISME Journal.

[6]  B. Jones,et al.  Microbial Biogeography of Six Salt Lakes in Inner Mongolia, China, and a Salt Lake in Argentina , 2009, Applied and Environmental Microbiology.

[7]  T. Sime-Ngando,et al.  Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia , 2009 .

[8]  N. Kyrpides,et al.  Prokaryotic community profiles at different operational stages of a Greek solar saltern. , 2008, Research in microbiology.

[9]  J. Antón,et al.  Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber , 2008, Saline systems.

[10]  J. Antón,et al.  Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. , 2008, FEMS microbiology ecology.

[11]  A. Ventosa,et al.  Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world , 2008, Extremophiles.

[12]  A. Oren Microbial life at high salt concentrations: phylogenetic and metabolic diversity , 2008, Saline systems.

[13]  E. Ammar,et al.  Prokaryotic diversity of a Tunisian multipond solar saltern , 2008, Extremophiles.

[14]  J. Antón,et al.  Microbial Diversity in Maras Salterns, a Hypersaline Environment in the Peruvian Andes , 2006, Applied and Environmental Microbiology.

[15]  A. Alves,et al.  Seasonal and spatial variability of free-living bacterial community composition along an estuarine gradient (Ria de Aveiro, Portugal) , 2006 .

[16]  M. Fields,et al.  Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China , 2006, Applied and Environmental Microbiology.

[17]  C. Pedrós-Alió,et al.  Marine microbial diversity: can it be determined? , 2006, Trends in microbiology.

[18]  M. Fields,et al.  Microbial Diversity in Sediments of Saline Qinghai Lake, China: Linking Geochemical Controls to Microbial Ecology , 2006, Microbial Ecology.

[19]  D. Canfield,et al.  Community Composition of a Hypersaline Endoevaporitic Microbial Mat , 2005, Applied and Environmental Microbiology.

[20]  W. Doolittle,et al.  Archaeal diversity along a soil salinity gradient prone to disturbance. , 2005, Environmental microbiology.

[21]  M. Dyall-Smith,et al.  Combined Use of Cultivation-Dependent and Cultivation-Independent Methods Indicates that Members of Most Haloarchaeal Groups in an Australian Crystallizer Pond Are Cultivable , 2004, Applied and Environmental Microbiology.

[22]  H. Kitazato,et al.  Vertical and temporal shifts in microbial communities in the water column and sediment of saline meromictic Lake Kaiike (Japan), as determined by a 16S rDNA-based analysis, and related to physicochemical gradients. , 2004, Environmental microbiology.

[23]  I. Janse,et al.  A simple remedy against artifactual double bands in denaturing gradient gel electrophoresis. , 2004, Journal of microbiological methods.

[24]  F. Rodríguez-Valera,et al.  Description of prokaryotic biodiversity along the salinity gradient of a multipond solar saltern by direct PCR amplification of 16S rDNA , 1996, Hydrobiologia.

[25]  R. Amann,et al.  Section 3 update: Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms , 2004 .

[26]  F. Rodríguez-Valera,et al.  Characterization of Microbial Diversity in Hypersaline Environments by Melting Profiles and Reassociation Kinetics in Combination with Terminal Restriction Fragment Length Polymorphism (T-RFLP) , 2003, Microbial Ecology.

[27]  M. Wagner,et al.  Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization , 2003, Extremophiles.

[28]  P. Servais,et al.  Variations of bacterial-specific activity with cell size and nucleic acid content assessed by flow cytometry , 2002 .

[29]  Frede Thingstad,et al.  Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. , 2002, Environmental microbiology.

[30]  E. Casamayor,et al.  Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. , 2002, Environmental microbiology.

[31]  R. Amann,et al.  Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. , 2002, International journal of systematic and evolutionary microbiology.

[32]  A. Oren,et al.  Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications , 2002, Journal of Industrial Microbiology and Biotechnology.

[33]  C. Litchfield,et al.  Microbial diversity and complexity in hypersaline environments: A preliminary assessment , 2002, Journal of Industrial Microbiology and Biotechnology.

[34]  E. Stackebrandt,et al.  Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: changes in the genetic diversity of bacterial populations. , 2001, FEMS microbiology ecology.

[35]  R. Amann,et al.  Extremely Halophilic Bacteria in Crystallizer Ponds from Solar Salterns , 2000, Applied and Environmental Microbiology.

[36]  R. Amann,et al.  Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. , 1999, Environmental microbiology.

[37]  J. Fuhrman,et al.  Significance of Size and Nucleic Acid Content Heterogeneity as Measured by Flow Cytometry in Natural Planktonic Bacteria , 1999, Applied and Environmental Microbiology.

[38]  K. Schleifer,et al.  The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. , 1999, Systematic and applied microbiology.

[39]  G. Muyzer,et al.  Optimization of Terminal-Restriction Fragment Length Polymorphism Analysis for Complex Marine Bacterioplankton Communities and Comparison with Denaturing Gradient Gel Electrophoresis , 1999, Applied and Environmental Microbiology.

[40]  R Amann,et al.  Phylogenetic analysis and in situ identification of bacteria in activated sludge , 1997, Applied and environmental microbiology.

[41]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[42]  A. Uitterlinden,et al.  Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA , 1993, Applied and environmental microbiology.

[43]  R. Amann,et al.  Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , 1990, Applied and environmental microbiology.

[44]  M. Hill,et al.  Data analysis in community and landscape ecology , 1987 .