Fabrication, structural elucidation of some new metal chelates based on N-(1H-Benzoimidazol-2-yl)-guanidine ligand: DNA interaction, pharmaceutical studies and molecular docking approach

[1]  Svilen P. Simeonov,et al.  A Review on the Green Synthesis of Benzimidazole Derivatives and Their Pharmacological Activities , 2023, Catalysts.

[2]  M. M. Khalaf,et al.  Recent Overview of Potent Antioxidant Activity of Coordination Compounds , 2023, Antioxidants.

[3]  M. M. Khalaf,et al.  Design, Synthesis, Spectroscopic Inspection, DFT and Molecular Docking Study of Metal Chelates Incorporating Azo Dye Ligand for Biological Evaluation , 2023, Materials.

[4]  A. A. Abdelhamid,et al.  Synthesis, structural, DFT, antibacterial, antifungal, anti-inflammatory, and molecular docking analysis of new VO(II), Fe(III), Mn(II), Zn(II), and Ag(I) complexes based on 4-((2-hydroxy-1-naphthyl)azo) benzenesulfonamide , 2023, Journal of Molecular Liquids.

[5]  E. Shokr,et al.  Thieno[2,3-b]thiophene Derivatives as Potential EGFRWT and EGFRT790M Inhibitors with Antioxidant Activities: Microwave-Assisted Synthesis and Quantitative In Vitro and In Silico Studies , 2022, ACS omega.

[6]  Eida S. Al-Farraj,et al.  Design, structural inspection of new bis(1H-benzo[d]imidazol-2-yl)methanone complexes: biomedical applications and theoretical implementations via DFT and docking approaches , 2022, Inorganic Chemistry Communications.

[7]  B. Gawdzik,et al.  A Series of Green Oxovanadium(IV) Precatalysts with O, N and S Donor Ligands in a Sustainable Olefins Oligomerization Process , 2022, Molecules.

[8]  H. Hrichi,et al.  Synthesis, structural, biological, molecular docking and DFT investigation of Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of the 4-[(5-oxo-4,5-dihydro-1,3-thiazol-2-yl)hydrazono]methyl}phenyl 4-methylbenzenesulfonate Schiff-base ligand , 2022, Polyhedron.

[9]  E. Shokr,et al.  Synthesis, characterization, and DFT study of linear and non-linear optical properties of some novel thieno[2,3-b]thiophene azo dye derivatives , 2022, Materials Chemistry and Physics.

[10]  Aly Abdou,et al.  Fabrication, Structural elucidation, DFT calculation and molecular docking studies of some novel adenine imine chelates for biomedical applications , 2022, Journal of Molecular Liquids.

[11]  M. M. Khalaf,et al.  Development of Metal Complexes for Treatment of Coronaviruses , 2022, International journal of molecular sciences.

[12]  A. Abu‐Dief,et al.  Targeted synthesis of two iron (III) tetradentate dibasic chelating Schiff base complexes towards inhibition of acidic induced steel corrosion: Empirical and DFT insights , 2022, Applied Organometallic Chemistry.

[13]  Eida S. Al-Farraj,et al.  Tailoring of some novel bis-hydrazone metal chelates, spectral based characterization and DFT calculations for pharmaceutical applications and in-silico treatments for verification , 2022, Journal of Molecular Structure.

[14]  M. M. Khalaf,et al.  Fabrication, DFT Calculation, and Molecular Docking of Two Fe(III) Imine Chelates as Anti-COVID-19 and Pharmaceutical Drug Candidate , 2022, International journal of molecular sciences.

[15]  Y. El‐Sayed,et al.  Characterization, theoretical computation, DNA‐binding, molecular docking, antibacterial and antioxidant activities of new metal complexes of (E)‐1‐((1H‐1,2,4‐triazol‐3‐yl)diazenyl)naphthalen‐2‐ol. , 2022, Applied Organometallic Chemistry.

[16]  A. Abu‐Dief,et al.  Synthesis, structural elucidation, DFT calculation, biological studies and DNA interaction of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates , 2022, Comput. Biol. Chem..

[17]  N. El‐Metwaly,et al.  Structural inspection for novel Pd(II), VO(II), Zn(II) and Cr(III)- azomethine metal chelates: DNA interaction, biological screening and theoretical treatments , 2021 .

[18]  A. Abu‐Dief,et al.  Tailoring, structural elucidation, DFT calculation, DNA interaction and pharmaceutical applications of some aryl hydrazone Mn(II), Cu(II) and Fe(III) complexes , 2021 .

[19]  E. Gao,et al.  Two Cu(II) and Zn(II) complexes derived from 5-(Pyrazol-1-yl)nicotinic acid: Crystal structure, DNA binding and anticancer studies , 2021, Journal of Solid State Chemistry.

[20]  K. Gholivand,et al.  Evaluating anti-coronavirus activity of some phosphoramides and their influencing inhibitory factors using molecular docking, DFT, QSAR, and NCI-RDG studies , 2021, Journal of Molecular Structure.

[21]  Alia Abdulaziz Alfi,et al.  Development of New Thiazole Complexes as Powerful Catalysts for Synthesis of Pyrazole-4-Carbonitrile Derivatives under Ultrasonic Irradiation Condition Supported by DFT Studies , 2021, ACS omega.

[22]  Tahani M. Bawazeer,et al.  Efficient and recoverable novel pyranothiazol Pd (II), Cu (II) and Fe(III) catalysts in simple synthesis of polyfunctionalized pyrroles: Under mild conditions using ultrasonic irradiation , 2021, Applied Organometallic Chemistry.

[23]  Amerah Alsoliemy,et al.  Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5‐ a ]pyrimidine derivatives in aqueous media using recoverable Pd (II) thiazole catalyst accelerated by ultrasonic: Computational studies , 2021, Applied Organometallic Chemistry.

[24]  N. El‐Metwaly,et al.  Optimization for synthesized quinoline-based Cr3+, VO2+, Zn2+ and Pd2+complexes: DNA interaction, biological assay and in-silico treatments for verification , 2021 .

[25]  N. El‐Metwaly,et al.  Synthesis and intensive characterization for novel Zn(II), Pd(II), Cr(III) and VO(II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies , 2021 .

[26]  H. Hamad,et al.  Boosting the catalytic performance of manganese (III)‐porphyrin complex MnTSPP for facile one‐pot green synthesis of 1,4‐dihydropyridine derivatives under mild conditions , 2021 .

[27]  N. El‐Metwaly,et al.  Synthesis and characterization of Fe(III), Pd(II) and Cu(II)-thiazole complexes; DFT, pharmacophore modeling, in-vitro assay and DNA binding studies , 2021, Journal of Molecular Liquids.

[28]  N. El‐Metwaly,et al.  Structural, conformational and therapeutic studies on new thiazole complexes: drug-likeness and MOE-simulation assessments , 2021, Research on Chemical Intermediates.

[29]  A. Shiroudi,et al.  Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and substituent effects , 2021 .

[30]  A. Nafady,et al.  Non-Linear Optical Property and Biological Assays of Therapeutic Potentials Under In Vitro Conditions of Pd(II), Ag(I) and Cu(II) Complexes of 5-Diethyl amino-2-({2-[(2-hydroxy-Benzylidene)-amino]-phenylimino}-methyl)-phenol , 2020, Molecules.

[31]  A. M. Khedr,et al.  Synthesis and Elucidation for New Nanosized Cr(III)-Pyrazolin Complexes; Crystal Surface Properties, Antitumor Simulation Studies Beside Practical Apoptotic Path , 2020, Journal of Inorganic and Organometallic Polymers and Materials.

[32]  A. Abu‐Dief,et al.  A robust in vitro Anticancer, Antioxidant and Antimicrobial Agents Based on New Metal‐Azomethine Chelates Incorporating Ag(I), Pd (II) and VO (II) Cations: Probing the Aspects of DNA Interaction , 2020 .

[33]  Mahmoud A. Noamaan,et al.  Synthesis, DFT, computational exploration of chemical reactivity, molecular docking studies of novel formazan metal complexes and their biological applications , 2020 .

[34]  A. Abu‐Dief,et al.  Novel azomethine Pd (II)‐ and VO (II)‐based metallo‐pharmaceuticals as anticancer, antimicrobial, and antioxidant agents: Design, structural inspection, DFT investigation, and DNA interaction , 2019, Journal of Physical Organic Chemistry.

[35]  M. A. El‐Remaily,et al.  Iron (III)‐porphyrin Complex FeTSPP as an efficient catalyst for synthesis of tetrazole derivatives via [2 + 3]cycloaddition reaction in aqueous medium , 2019, Applied Organometallic Chemistry.

[36]  A. Saeed,et al.  Novel Guanidine Compound against Multidrug-Resistant Cystic Fibrosis-Associated Bacterial Species , 2018, Molecules.

[37]  A. Adam,et al.  Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu(II), Co(II) and Ni(II) chelates based on tri‐dentate NOO imine ligand as precursors for metal oxides , 2018 .

[38]  A. D. Khalaji,et al.  Six‐coordinated vanadium(IV) complexes with tridentate task‐specific ionic liquid Schiff base ligands: Synthesis, characterization and effect of ionic nature on catalytic activity , 2018 .

[39]  A. Taherpour,et al.  Synthesis, characterization and in vitro DNA binding studies of a new copper(II) complex containing antioxidant ferulic acid , 2017 .

[40]  A. Abu‐Dief,et al.  Design and nonlinear optical properties (NLO) using DFT approach of new Cr(III), VO(II), and Ni(II) chelates incorporating tri-dentate imine ligand for DNA interaction, antimicrobial, anticancer activities and molecular docking studies , 2017 .

[41]  A. Abu‐Dief,et al.  Development, structural investigation, DNA binding, antimicrobial screening and anticancer activities of two novel quari-dentate VO(II) and Mn (II) mononuclear complexes , 2017, Journal of King Saud University - Science.

[42]  Y. Rahman,et al.  Caffeic acid binds to the minor groove of calf thymus DNA: A multi-spectroscopic, thermodynamics and molecular modelling study. , 2017, International journal of biological macromolecules.

[43]  A. Abu‐Dief,et al.  Synthesis, characterization, and biological activity of new mixed ligand transition metal complexes of glutamine, glutaric, and glutamic acid with nitrogen based ligands , 2017 .

[44]  Qiangqiang Fu,et al.  Synthesis and Biological Evaluation of Two Oxidovanadium (IV) Complexes as DNA-binding and Apoptosis-Inducing Agents , 2016 .

[45]  A. Abu‐Dief,et al.  Sonochemical synthesis, DNA binding, antimicrobial evaluation and in vitro anticancer activity of three new nano-sized Cu(II), Co(II) and Ni(II) chelates based on tri-dentate NOO imine ligands as precursors for metal oxides. , 2016, Journal of photochemistry and photobiology. B, Biology.

[46]  A. Abu‐Dief,et al.  Some new nano-sized Cr(III), Fe(II), Co(II), and Ni(II) complexes incorporating 2-((E)-(pyridine-2-ylimino)methyl)napthalen-1-ol ligand: Structural characterization, electrochemical, antioxidant, antimicrobial, antiviral assessment and DNA interaction. , 2016, Journal of photochemistry and photobiology. B, Biology.

[47]  A. Abu‐Dief,et al.  Synthesis, structure elucidation, biological screening, molecular modeling and DNA binding of some Cu(II) chelates incorporating imines derived from amino acids , 2016 .

[48]  N. Aliaga-Alcalde,et al.  Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds , 2015 .

[49]  L. Açık,et al.  DNA cleavage, antimicrobial studies and a DFT-based QSAR study of new antimony(III) complexes as glutathione reductase inhibitor. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[50]  Naresh Kandakatla,et al.  Ligand Based Pharmacophore Modeling and Virtual Screening Studies to Design Novel HDAC2 Inhibitors , 2014, Adv. Bioinformatics.

[51]  D. Easwaramoorthy,et al.  Synthesis, structural, spectral, electrochemical and catalytic properties of VO (IV) complexes containing N, O donors , 2014 .

[52]  Sonja Herres-Pawlis,et al.  Geometrical and optical benchmarking of copper guanidine–quinoline complexes: Insights from TD‐DFT and many‐body perturbation theory† , 2014, J. Comput. Chem..

[53]  S. Chandra,et al.  Mn(II) and Cu(II) complexes of a bidentate Schiff's base ligand: spectral, thermal, molecular modelling and mycological studies. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[54]  A. Abu‐Dief,et al.  Design, characterization, teratogenicity testing, antibacterial, antifungal and DNA interaction of few high spin Fe(II) Schiff base amino acid complexes. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[55]  S. Chandra,et al.  Synthesis, characterization and biocidal properties of platinum metal complexes derived from 2,6-diacetylpyridine (bis thiosemicarbazone) , 2012 .

[56]  Alexander Hoffmann,et al.  (Guanidine)copper complexes: structural variety and application in bioinorganic chemistry and catalysis , 2011 .

[57]  Huining Xiao,et al.  Synergistic effects of chitosan-guanidine complexes on enhancing antimicrobial activity and wet-strength of paper. , 2010, Bioresource technology.

[58]  M. Refat Synthesis, characterization, thermal and antimicrobial studies of diabetic drug models: Complexes of vanadyl(II) sulfate with ascorbic acid (vitamin C), riboflavin (vitamin B2) and nicotinamide (vitamin B3) , 2010 .

[59]  T. Prangé,et al.  Oxygen pressurized X-ray crystallography: probing the dioxygen binding site in cofactorless urate oxidase and implications for its catalytic mechanism. , 2008, Biophysical journal.

[60]  H. Sakurai,et al.  Biospeciation of antidiabetic VO(IV) complexes , 2008 .

[61]  B. Golinelli‐Pimpaneau,et al.  Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. , 2008, Journal of molecular biology.

[62]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[63]  W. Chui,et al.  Synthesis and biological activity of 1,3,5-triazino[1,2-a]benzimidazol-2-amines , 2007, Pharmaceutical Chemistry Journal.

[64]  D. Powell,et al.  Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, tau4. , 2007, Dalton transactions.

[65]  S. Tabassum,et al.  New homodi-and heterotrinuclear metal complexes of Schiff base compartmental ligand: interaction studies of copper complexes with calf thymus DNA , 2006 .

[66]  K. Fukui Grenzorbitale – ihre Bedeutung bei chemischen Reaktionen (Nobel‐Vortrag) , 2006 .

[67]  Yosadara Ruiz-Morales,et al.  HOMO−LUMO Gap as an Index of Molecular Size and Structure for Polycyclic Aromatic Hydrocarbons (PAHs) and Asphaltenes: A Theoretical Study. I , 2002 .

[68]  C. Vinodkumar,et al.  Thermal Studies on Lanthanide Nitrate Complexes of 4-n-(2′-furfurylidene)aminoantipyrine , 2000 .

[69]  J. Aihara,et al.  Reduced HOMO−LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons , 1999 .

[70]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[71]  Ralph G. Pearson,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[72]  R. Parr,et al.  Electronegativity: The density functional viewpoint , 1978 .

[73]  R. Drago Pearson's quantitative statement of HSAB [hard-soft acid-base] , 1973 .

[74]  P. C. Hariharan,et al.  The effect of d-functions on molecular orbital energies for hydrocarbons , 1972 .

[75]  Kenichi Fukui,et al.  Recognition of stereochemical paths by orbital interaction , 1971 .

[76]  K. Fukui Formulation of the reaction coordinate , 1970 .

[77]  Joseph H. Flynn,et al.  General Treatment of the Thermogravimetry of Polymers. , 1966, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[78]  T. Ozawa A New Method of Analyzing Thermogravimetric Data , 1965 .

[79]  H. Horowitz,et al.  A New Analysis of Thermogravimetric Traces. , 1963 .

[80]  Eli S. Freeman,et al.  The Application of Thermoanalytical Techniques to Reaction Kinetics: The Thermogravimetric Evaluation of the Kinetics of the Decomposition of Calcium Oxalate Monohydrate , 1958 .

[81]  P. Kofstad Oxidation of Metals: Determination of Activation Energies , 1957, Nature.

[82]  A. Abu‐Dief,et al.  Three novel Ni(II), VO(II) and Cr(III) mononuclear complexes encompassing potentially tridentate imine ligand: Synthesis, structural characterization, DNA interaction, antimicrobial evaluation and anticancer activity , 2017 .

[83]  H. Abdel-ghany,et al.  Synthesis and biological activity of dihydroimidazole and 3,4-dihydrobenzo[4,5]imidazo[1,2-a][1,3,5]triazins. , 2012, European journal of medicinal chemistry.

[84]  K. Nakamoto Infrared spectra of inorganic and coordination compounds , 1970 .

[85]  A. W. Coats,et al.  Kinetic Parameters from Thermogravimetric Data , 1964, Nature.