Parametric Problems on Graphs of Bounded Tree-Width

We consider optimization problems on weighted graphs where vertex and edge weights are polynomial functions of a parameter ?. We show that, if a problem satisfies certain regularity properties and the underlying graph was bounded tree-width, the number of changes in the optimum solution is polynomially bounded. We also show that the description of the sequence of optimum solutions can be constructed in polynomial time and that certain parametric search problems can be solved in O(n log n) time, where n is the number of vertices in the graph.

[1]  Richard Cole,et al.  Slowing down sorting networks to obtain faster sorting algorithms , 2015, JACM.

[2]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[3]  Hans L. Bodlaender,et al.  Dynamic Programming on Graphs with Bounded Treewidth , 1988, ICALP.

[4]  Nimrod Megiddo,et al.  Applying parallel computation algorithms in the design of serial algorithms , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[5]  Mikhail J. Atallah,et al.  Dynamic computational geometry , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[6]  Eugene L. Lawler,et al.  Linear-Time Computation of Optimal Subgraphs of Decomposable Graphs , 1987, J. Algorithms.

[7]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[8]  Stephen T. Hedetniemi,et al.  Linear algorithms on k-terminal graphs , 1987 .

[9]  Uriel G. Rothblum,et al.  A Theory on Extending Algorithms for Parametric Problems , 1989, Math. Oper. Res..

[10]  David Fernández-Baca,et al.  Solving Parametric Problems on Trees , 1989, J. Algorithms.

[11]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[12]  Stefan Arnborg,et al.  Linear time algorithms for NP-hard problems restricted to partial k-trees , 1989, Discret. Appl. Math..

[13]  Robin Thomas,et al.  Algorithms Finding Tree-Decompositions of Graphs , 1991, J. Algorithms.

[14]  David Fernández-Baca,et al.  Parametric Module Allocation on Partial k-Trees , 1993, IEEE Trans. Computers.

[15]  Patricia J. Carstensen Complexity of some parametric integer and network programming problems , 1983, Math. Program..

[16]  J. Lagergren Efficient parallel algorithms for tree-decomposition and related problems , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[17]  Yehoshua Perl,et al.  Best location of service centers in a treelike network under budget constraints , 1991, Discret. Math..

[18]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[19]  Dan Gusfield,et al.  Parametric Combinatorial Computing and a Problem of Program Module Distribution , 1983, JACM.

[20]  Michael R. Fellows,et al.  Finite automata, bounded treewidth, and well-quasiordering , 1991, Graph Structure Theory.

[21]  Daniel Mier Gusfield Sensitivity analysis for combinatorial optimization , 1980 .

[22]  Bruce A. Reed,et al.  Finding approximate separators and computing tree width quickly , 1992, STOC '92.

[23]  Micha Sharir,et al.  Almost linear upper bounds on the length of general davenport—schinzel sequences , 1987, Comb..

[24]  Nimrod Megiddo Combinatorial Optimization with Rational Objective Functions , 1979, Math. Oper. Res..

[25]  Katta G. Murty,et al.  Computational complexity of parametric linear programming , 1980, Math. Program..

[26]  David Fernández-Baca,et al.  Solving Parametric Problems on Trees , 1988, STACS.

[27]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[28]  Wayne Goddard,et al.  An Algorithm for Outerplanar Graphs with Parameter , 1991, J. Algorithms.

[29]  Hans L. Bodlaender,et al.  Some Classes of Graphs with Bounded Treewidth , 1988, Bull. EATCS.

[30]  Nimrod Megiddo,et al.  Combinatorial optimization with rational objective functions , 1978, Math. Oper. Res..

[31]  MegiddoNimrod Applying Parallel Computation Algorithms in the Design of Serial Algorithms , 1983 .

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[34]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..