Predator–prey interaction with harvesting: mathematical study with biological ramifications

Abstract In this article, we study a simple predator–prey interaction where predator population is subjected to harvesting. Our qualitative analysis shows different outcomes including switching of stability, oscillations and deterministic extinction. Theoretically observed results have been tested with the parameter values of Paramecium aurelia and its predator Didinium nasutum . Study reveals that harvesting effort and predator’s attack rate may be used as control parameters for the system. Simulation results also indicate that the system may exhibit bistability for some parametric region. Our study also gives the possible answer to the question – why do we frequently observe coexisting predator–prey system in natural system? The study may be helpful to design control strategy for harvested predator–prey system.

[1]  M. Rosenzweig Paradox of Enrichment: Destabilization of Exploitation Ecosystems in Ecological Time , 1971, Science.

[2]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[3]  S. Diehl,et al.  Daphnia-Phytoplankton Interactions in Lakes: Is There a Need for Ratio-Dependent Consumer-Resource Models? , 1993, The American Naturalist.

[4]  C. Huffaker Experimental studies on predation : dispersion factors and predator-prey oscillations , 1958 .

[5]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[6]  Dongmei Xiao,et al.  Global dynamics of a ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[7]  G. Harrison,et al.  Comparing Predator‐Prey Models to Luckinbill's Experiment with Didinium and Paramecium , 1995 .

[8]  Carl J. Walters,et al.  Invulnerable Prey and the Paradox of Enrichment , 1996 .

[9]  Artem S Novozhilov,et al.  Population models with singular equilibrium. , 2006, Mathematical biosciences.

[10]  Takehito Yoshida,et al.  A DIRECT, EXPERIMENTAL TEST OF RESOURCE VS. CONSUMER DEPENDENCE , 2005 .

[11]  A. Gutierrez Physiological Basis of Ratio-Dependent Predator-Prey Theory: The Metabolic Pool Model as a Paradigm , 1992 .

[12]  Thomas L. Vincent,et al.  Optimal Control of a Prey-Predator System* , 1974 .

[13]  R Arditi,et al.  Parametric analysis of the ratio-dependent predator–prey model , 2001, Journal of mathematical biology.

[14]  Mike Mesterton-Gibbons,et al.  A technique for finding optimal two-species harvesting policies , 1996 .

[15]  S. Gleeson Density Dependence is Better Than Ratio Dependence , 1994 .

[16]  G. Salt,et al.  Predator and Prey Densities as Controls of the Rate of Capture by the Predator Didinium Nasutum , 1974 .

[17]  G. Jones,et al.  Habitat complexity modifies the impact of piscivores on a coral reef fish population , 1998, Oecologia.

[18]  G. F. Gause The struggle for existence , 1971 .

[19]  Sze-Bi Hsu,et al.  A ratio-dependent food chain model and its applications to biological control. , 2003, Mathematical biosciences.

[20]  Peter A. Abrams,et al.  The Fallacies of "Ratio‐Dependent" Predation , 1994 .

[21]  Yang Kuang,et al.  Global qualitative analysis of a ratio-dependent predator–prey system , 1998 .

[22]  Alan B. Bolten,et al.  The Relationship of the Nutritive State of the Prey Organism Paramecium aurelia to the Growth and Encystment of Didinium nasutum , 1968 .

[23]  Christian Jost,et al.  About deterministic extinction in ratio-dependent predator-prey models , 1999 .

[24]  S. Ellner,et al.  Testing for predator dependence in predator-prey dynamics: a non-parametric approach , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  S. Ellner,et al.  Crossing the hopf bifurcation in a live predator-prey system. , 2000, Science.

[26]  Yilei Tang,et al.  Heteroclinic bifurcation in a ratio-dependent predator-prey system , 2005, Journal of mathematical biology.

[27]  Robert F. Luck,et al.  Evaluation of natural enemies for biological control: A behavioral approach , 1990 .

[28]  Yang Kuang,et al.  Heteroclinic Bifurcation in the Michaelis-Menten-Type Ratio-Dependent Predator-Prey System , 2007, SIAM J. Appl. Math..

[29]  Colin W. Clark,et al.  Mathematical Bioeconomics: The Optimal Management of Renewable Resources. , 1993 .

[30]  S. Ruan,et al.  Predator-prey models with delay and prey harvesting , 2001, Journal of mathematical biology.

[31]  Oluwole Daniel Makinde Solving ratio-dependent predator-prey system with constant effort harvesting using Adomian decomposition method , 2007, Appl. Math. Comput..

[32]  K. S. Chaudhuri,et al.  ON THE COMBINED HARVESTING OF A PREY-PREDATOR SYSTEM , 1996 .

[33]  L. Slobodkin,et al.  Community Structure, Population Control, and Competition , 1960, The American Naturalist.

[34]  L. Luckinbill,et al.  Coexistence in Laboratory Populations of Paramecium Aurelia and Its Predator Didinium Nasutum , 1973 .

[35]  Dongmei Xiao,et al.  Bifurcations of a Ratio-Dependent Predator-Prey System with Constant Rate Harvesting , 2005, SIAM J. Appl. Math..

[36]  Roger Arditi,et al.  Ratio-Dependent Predation: An Abstraction That Works , 1995 .

[37]  R Arditi,et al.  The biological control paradox. , 1991, Trends in ecology & evolution.

[38]  Maoan Han,et al.  Dynamics in a ratio-dependent predator–prey model with predator harvesting , 2006 .

[39]  R. Arditi,et al.  Coupling in predator-prey dynamics: Ratio-Dependence , 1989 .