Proof-of-concept framework to separate recombination processes in thin silicon wafers using transient free-carrier absorption spectroscopy

We present a proof-of-concept framework to independently determine the bulk Shockley-Read-Hall (SRH) lifetime and surface recombination velocity in silicon wafers self-consistently. We measure the transient decay of free-carrier absorption (FCA) using two different excitation wavelengths (1050 and 750 nm) for p-type crystalline Si (c-Si) wafers over a wide injection range and fit the FCA transients for the two excitation wavelengths in a coupled manner. In this way, we can estimate the surface recombination lifetime accurately. However, we find that the capability to uniquely measure extrinsic bulk-SRH recombination is challenging in the presence of other recombination processes and can be broadly categorized into five different regimes depending on the relative strengths of each recombination pathway.

[1]  Andrew C. Rudack,et al.  Pareto analysis of critical challenges for emerging manufacturing technologies in silicon photovoltaics , 2014 .

[2]  P. Altermatt,et al.  Injection dependence of the effective lifetime of n-type Si passivated by Al2O3: An edge effect? , 2014 .

[3]  D. M. Powell,et al.  Effective lifetimes exceeding 300 μs in gettered p-type epitaxial kerfless silicon for photovoltaics , 2013 .

[4]  G. Richmond,et al.  Time-resolved measurement of free carrier absorption, diffusivity, and internal quantum efficiency in silicon , 2013 .

[5]  S. Bowden,et al.  750 mV open circuit voltage measured on 50 μm thick silicon heterojunction solar cell , 2013 .

[6]  D. M. Powell,et al.  Modeling the Cost and Minimum Sustainable Price of Crystalline Silicon Photovoltaic Manufacturing in the United States , 2013, IEEE Journal of Photovoltaics.

[7]  S. Glunz,et al.  Improved quantitative description of Auger recombination in crystalline silicon , 2012 .

[8]  Marius Peters,et al.  Advanced modeling of the effective minority carrier lifetime of passivated crystalline silicon wafers , 2012 .

[9]  Toshihiro Kinoshita,et al.  Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer , 2012 .

[10]  Pietro P. Altermatt,et al.  Models for numerical device simulations of crystalline silicon solar cells—a review , 2011 .

[11]  Harold Dekkers,et al.  Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge , 2006 .

[12]  Dieter K. Schroder,et al.  Surface recombination velocity of silicon wafers by photoluminescence , 2005 .

[13]  Wilhelm Warta,et al.  Free carrier absorption in heavily doped silicon layers , 2004 .

[14]  D. Macdonald,et al.  Measuring and interpreting the lifetime of silicon wafers , 2004 .

[15]  Richard Corkish,et al.  Temperature dependence of the radiative recombination coefficient of intrinsic crystalline silicon , 2003 .

[16]  A. Cuevas,et al.  General parameterization of Auger recombination in crystalline silicon , 2002 .

[17]  Jan Linnros,et al.  Carrier lifetime measurements using free carrier absorption transients. II. Lifetime mapping and effects of surface recombination , 1998 .

[18]  Jan Linnros,et al.  Carrier lifetime measurements using free carrier absorption transients. I. Principle and injection dependence , 1998 .

[19]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[20]  Thomas Lauinger,et al.  Record low surface recombination velocities on 1 Ω cm p‐silicon using remote plasma silicon nitride passivation , 1996 .

[21]  Thomas Lauinger,et al.  Injection-level dependent surface recombination velocities at the silicon-plasma silicon nitride interface , 1995 .

[22]  W. Warta,et al.  High‐resolution lifetime mapping using modulated free‐carrier absorption , 1995 .

[23]  Alistair B. Sproul,et al.  Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors , 1994 .

[24]  W. Warta,et al.  Injection‐level‐dependent recombination velocities at the Si‐SiO2 interface for various dopant concentrations , 1994 .

[25]  Wilhelm Warta,et al.  Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si‐SiO2 interface , 1992 .

[26]  J. Linnros,et al.  A study of carrier lifetime in silicon by laser-induced absorption: A perpendicular geometry measurement , 1992 .

[27]  R. J. Schwartz,et al.  Contactless nondestructive measurement of bulk and surface recombination using frequency-modulated free carrier absorption , 1992 .

[28]  Eli Yablonovitch,et al.  A contactless minority lifetime probe of heterostructures, surfaces, interfaces and bulk wafers , 1992 .

[29]  G. Rozgonyi,et al.  Bulk and surface components of recombination lifetime based on a two‐laser microwave reflection technique , 1991 .

[30]  Li-Jen Cheng,et al.  Analysis of the interaction of a laser pulse with a silicon wafer - Determination of bulk lifetime and surface recombination velocity , 1987 .

[31]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[32]  J. Dziewior,et al.  Auger coefficients for highly doped and highly excited silicon , 1977 .