Generalizing univariate signed rank statistics for testing and estimating a multivariate location parameter

We generalize signed rank statistics to dimensions higher than one. This results in a class of orthogonally invariant and distribution free tests that can be used for testing spherical symmetry/location parameter. The corresponding estimator is orthogonally equivariant. Both the test and estimator can be chosen with asymptotic efficiency 1. The breakdown point of the estimator depends only on the scores, not on the dimension of the data. For elliptical distributions, weobtain an affine invariant test with the same asymptotic properties, if the signed rank statisticis applied to standardized data. We also present a method for computing the estimator numerically, and consider a real data example and some simulations. Finally, an application to detection of time-varying signals in spherically symmetric noise is given.

[1]  Hannu Oja,et al.  On Certain Bivariate Sign Tests and Medians , 1992 .

[2]  C. Small A Survey of Multidimensional Medians , 1990 .

[3]  J. Utts,et al.  Robustness properties for a simple class of rank estimates , 1977 .

[4]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[5]  F. Bedall,et al.  Algorithm AS 143: The Mediancentre , 1979 .

[6]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[7]  P. Chaudhuri,et al.  Sign Tests in Multidimension: Inference Based on the Geometry of the Data Cloud , 1993 .

[8]  J. McKean,et al.  The Geometry of Robust Procedures in Linear Models , 1980 .

[9]  D. Ruppert Computing S Estimators for Regression and Multivariate Location/Dispersion , 1992 .

[10]  Ronald H. Randles,et al.  A Multivariate Signed-Rank Test for the One-Sample Location Problem , 1990 .

[11]  G. V. Kass,et al.  Location of Several Outliers in Multiple-Regression Data Using Elemental Sets , 1984 .

[12]  J. C. Gower,et al.  Algorithm AS 78: The Mediancentre , 1974 .

[13]  P. Chaudhuri Multivariate location estimation using extension of R-estimates through U-statistics type approach , 1992 .

[14]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[15]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[16]  T. Hettmansperger,et al.  Weighted least-squares rank estimates , 1983 .

[17]  Hannu Oja,et al.  Affine Invariant Multivariate One‐Sample Sign Tests , 1994 .

[18]  Ronald H. Randles,et al.  Multivariate rank tests for the two-sample location problem , 1990 .

[19]  B. M. Brown,et al.  An Affine Invariant Bivariate Version of the Sign Test , 1989 .

[20]  B. M. Brown,et al.  Affine Invariant Rank Methods in the Bivariate Location Model , 1987 .

[21]  P. Sen,et al.  Theory of rank tests , 1969 .

[22]  B. M. Brown,et al.  Statistical Uses of the Spatial Median , 1983 .

[23]  Show-Li Jan,et al.  A multivariate signed sum test for theone-sample location problem , 1994 .

[24]  Siegfried Heiler,et al.  Asymptotic normality of r-estimates in the linear model , 1988 .

[25]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[26]  Yadolah Dodge,et al.  L 1 -Statistical Analysis and Related Methods. , 1993 .

[27]  R. Randles A Distribution-Free Multivariate Sign Test Based on Interdirections , 1989 .

[28]  Jana Jurečková,et al.  Asymptotic Linearity of a Rank Statistic in Regression Parameter , 1969 .

[29]  C. D. Kemp,et al.  Statistical Inference Based on Ranks , 1986 .