SPOT: An R Package For Automatic and Interactive Tuning of Optimization Algorithms by Sequential Parameter Optimization

The sequential parameter optimization (spot) package for R (R Development Core Team, 2008) is a toolbox for tuning and understanding simulation and optimization algorithms. Model-based investigations are common approaches in simulation and optimization. Sequential parameter optimization has been developed, because there is a strong need for sound statistical analysis of simulation and optimization algorithms. spot includes methods for tuning based on classical regression and analysis of variance techniques; tree-based models such as CART and random forest; Gaussian process models (Kriging), and combinations of dierent metamodeling approaches. This article exemplies how spot can be used for automatic and interactive tuning.

[1]  Heike Trautmann,et al.  Statistical Methods for Improving Multi-objective Evolutionary Optimisation , 2009 .

[2]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[3]  Oliver Kramer,et al.  An experimental analysis of evolution strategies and particle swarm optimisers using design of experiments , 2007, GECCO '07.

[4]  Yu Yi,et al.  Fuzzy operator trees for modeling utility functions , 2008 .

[5]  Claus Weihs,et al.  Classification as a Tool for Research , 2010 .

[6]  Günter Rudolph,et al.  Two-layered Surrogate Modeling for Tuning Optimization Metaheuristics , 2009 .

[7]  Wolfgang Banzhaf,et al.  Total synthesis of algorithmic chemistries , 2005, GECCO '05.

[8]  Thomas Bartz-Beielstein,et al.  Multi-objective evolutionary design of mold temperature control using DACE for parameter optimization , 2007 .

[9]  Jack P. C. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[10]  A. E. Eiben,et al.  Comparing parameter tuning methods for evolutionary algorithms , 2009, 2009 IEEE Congress on Evolutionary Computation.

[11]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[12]  Thomas Bartz-Beielstein,et al.  The Future of Experimental Research , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[13]  Thomas Bartz-Beielstein How experimental algorithmics can benefit from Mayo’s extensions to Neyman–Pearson theory of testing , 2007, Synthese.

[14]  Thomas Bartz-Beielstein,et al.  Comparing CI Methods for Prediction Models in Environmental Engineering , 2010 .

[15]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[16]  Russell V. Lenth,et al.  Response-Surface Methods in R, Using rsm , 2009 .

[17]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .

[18]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[19]  L. Gwenn Volkert Investigating EA Based Training of HMM using a Sequential Parameter Optimization Approach , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[20]  Christian W. G. Lasarczyk,et al.  Genetische Programmierung einer algorithmischen Chemie , 2008 .

[21]  Günter Rudolph,et al.  Economic optimization of non-sharp separation sequences by means of evolutionary algorithms , 2008, Comput. Chem. Eng..

[22]  Thomas Bartz-Beielstein,et al.  The Sequential Parameter Optimization Toolbox , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[23]  Sandor Markon,et al.  Threshold selection, hypothesis tests, and DOE methods , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[24]  Thomas Bartz-Beielstein,et al.  Optimization of biogas production with computational intelligence a comparative study , 2010, IEEE Congress on Evolutionary Computation.

[25]  Michael C. Fu,et al.  Feature Article: Optimization for simulation: Theory vs. Practice , 2002, INFORMS J. Comput..

[26]  J. Kleijnen Statistical tools for simulation practitioners , 1986 .

[27]  Chun-Hung Chen,et al.  Optimal Computing Budget Allocation of Indifference-zone-selection Procedures , 2003 .

[28]  Kevin P. Murphy,et al.  Time-Bounded Sequential Parameter Optimization , 2010, LION.

[29]  Eyke Hüllermeier,et al.  Evolutionary Construction of Multiple Graph Alignments for the Structural Analysis of Biomolecules , 2009, German Conference on Bioinformatics.

[30]  Thomas Bartz-Beielstein,et al.  Optimierte Modellierung von Füllständen in Regenüberlaufbecken mittels CI-basierter ParameterselektionOptimized Modelling of Fill Levels in Stormwater Tanks Using CI-based Parameter Selection Schemes , 2009, Autom..

[31]  Thomas Bartz-Beielstein,et al.  Sequential parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[32]  B. Naujoks Sequential parameter optimisation of evolutionary algorithms for airfoil design , 2006 .

[33]  Thomas Bartz-Beielstein,et al.  Sequential Model-Based Parameter Optimization: an Experimental Investigation of Automated and Interactive Approaches , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[34]  Volker Nannen Evolutionary Agent-Based Policy Analysis in Dynamic Environments , 2009 .

[35]  Michael C. Fu,et al.  Optimization for Simulation: Theory vs. Practice , 2002 .

[36]  Thomas Bartz-Beielstein,et al.  Design and Analysis of Optimization Algorithms Using Computational Statistics , 2004 .

[37]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[38]  Thomas Bartz-Beielstein,et al.  Sequential Parameter Optimization An Annotated Bibliography , 2010 .

[39]  Günter Rudolph,et al.  Solving multimodal problems via multiobjective techniques with Application to phase equilibrium detection , 2007, 2007 IEEE Congress on Evolutionary Computation.

[40]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.