Discontinuous Galerkin method with arbitrary polygonal finite elements

Abstract The paper presents the efficient application of discontinuous Galerkin (DG) method on polygonal meshes. Three versions of the DG method in which the approximation is constructed using sets of arbitrary basis functions are under consideration. The analysed approach does not require definition of nodes or construction of shape functions. The shape of a polygonal finite element (FE) can be quite arbitrary. It can have arbitrary number of edges and can be non-convex. In particular, a single FE can have a polygonal hole or can even consist of two or more completely separated parts. The efficiency, flexibility and versatility of the presented approach is illustrated with a set of benchmark examples. The paper is restricted to two-dimensional case. However, direct extension of the algorithms to three-dimensions is possible.

[1]  Paul Steinmann,et al.  Investigations on the polygonal finite element method: Constrained adaptive Delaunay tessellation and conformal interpolants , 2013 .

[2]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[3]  Somnath Ghosh,et al.  Three dimensional Voronoi cell finite element model for microstructures with ellipsoidal heterogeneties , 2004 .

[4]  Paul Steinmann,et al.  Finite element formulations for 3D convex polyhedra in nonlinear continuum mechanics , 2017 .

[5]  Cameron Talischi,et al.  A Family of H(div) Finite Element Approximations on Polygonal Meshes , 2015, SIAM J. Sci. Comput..

[6]  Glaucio H. Paulino,et al.  Gradient correction for polygonal and polyhedral finite elements , 2015 .

[7]  Béatrice Rivière,et al.  Discontinuous Galerkin Methods for Second-Order Elliptic PDE with Low-Regularity Solutions , 2011, J. Sci. Comput..

[8]  Junping Wang,et al.  A weak Galerkin mixed finite element method for second order elliptic problems , 2012, Math. Comput..

[9]  Stefano Giani,et al.  Solving elliptic eigenvalue problems on polygonal meshes using discontinuous Galerkin composite finite element methods , 2015, Appl. Math. Comput..

[10]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[11]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .

[12]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[13]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[14]  L. Beirao da Veiga,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014 .

[15]  Jerzy Pamin,et al.  Thermo-mechanical XFEM-type modeling of laminated structure with thin inner layer , 2015 .

[16]  Lin Mu,et al.  Shape regularity conditions for polygonal/polyhedral meshes, exemplified in a discontinuous Galerkin discretization , 2015 .

[17]  Franco Brezzi,et al.  Virtual Element Methods for plate bending problems , 2013 .

[18]  N. Sukumar Construction of polygonal interpolants: a maximum entropy approach , 2004 .

[19]  N. Sukumar,et al.  Archives of Computational Methods in Engineering Recent Advances in the Construction of Polygonal Finite Element Interpolants , 2022 .

[20]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[21]  J. Jaśkowiec The discontinuous Galerkin method with higher degree finite difference compatibility conditions and arbitrary local and global basis functions , 2017 .

[22]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[23]  Murat Manguoglu,et al.  Adaptive discontinuous Galerkin methods for non-linear diffusion-convection-reaction equations , 2014, Comput. Chem. Eng..

[24]  Gautam Dasgupta,et al.  Interpolants within Convex Polygons: Wachspress' Shape Functions , 2003 .

[25]  Santiago Badia,et al.  On the design of discontinuous Galerkin methods for elliptic problems based on hybrid formulations , 2013 .

[26]  Alireza Tabarraei,et al.  APPLICATION OF POLYGONAL FINITE ELEMENTS IN LINEAR ELASTICITY , 2006 .

[27]  K. Garikipati,et al.  A discontinuous Galerkin formulation for a strain gradient-dependent damage model , 2004 .

[28]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[29]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[30]  Sergej Rjasanow,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .

[31]  P. Houston,et al.  hp-Version Discontinuous Galerkin Methods on Polygonal and Polyhedral Meshes , 2017 .

[32]  Joseph E. Bishop,et al.  A displacement‐based finite element formulation for general polyhedra using harmonic shape functions , 2014 .

[33]  A. Russo,et al.  New perspectives on polygonal and polyhedral finite element methods , 2014 .

[34]  Junping Wang,et al.  Interior penalty discontinuous Galerkin method on very general polygonal and polyhedral meshes , 2012, J. Comput. Appl. Math..

[35]  Seizo Tanaka,et al.  Discontinuous Galerkin Methods with Nodal and Hybrid Modal/Nodal Triangular, Quadrilateral, and Polygonal Elements for Nonlinear Shallow Water Flow , 2014 .

[36]  L. Beirao da Veiga,et al.  A Virtual Element Method for elastic and inelastic problems on polytope meshes , 2015, 1503.02042.

[37]  Béatrice Rivière,et al.  Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.

[38]  Dimitri J. Mavriplis,et al.  hp-Adaptive Discontinuous Galerkin Solver for the Navier-Stokes Equations , 2012 .

[39]  Gautam Dasgupta,et al.  Integration within Polygonal Finite Elements , 2003 .

[40]  Glaucio H. Paulino,et al.  Polygonal finite elements for finite elasticity , 2015 .

[41]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[42]  P. Milbradt,et al.  Polytope finite elements , 2008 .

[43]  J. Jaśkowiec The hp nonconforming mesh refinement in discontinuous Galerkin finite element method based on Zienkiewicz-Zhu error estimation , 2016 .

[44]  M. Putti,et al.  Post processing of solution and flux for the nodal mimetic finite difference method , 2015 .

[45]  Steffen Weißer,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes Residual Error Estimate for Bem-based Fem on Polygonal Meshes , 2022 .