The impact of pre-formed and in situ spinel formation on the physical properties of cement-bonded high alumina refractory castables
暂无分享,去创建一个
[1] V. Pandolfelli,et al. Microsilica Role in the CA6 Formation in Cement-Bonded Spinel Refractory Castables , 2009 .
[2] V. Pandolfelli,et al. Magnesia grain size effect on in situ spinel refractory castables , 2008 .
[3] V. Pandolfelli,et al. Microsilica Effects on Cement Bonded Alumina-Magnesia Refractory Castables , 2008 .
[4] Mariana A. L. Braulio,et al. Espinelização in-situ e seu efeito na resistência ao choque térmico de concretos refratários , 2008 .
[5] C. Gault,et al. Evolution of elastic properties and microstructural changes versus temperature in bonding phases of alumina and alumina–magnesia refractory castables , 2007 .
[6] W. E. Lee,et al. Spinel-Containing Refractories , 2004 .
[7] B. Touzo,et al. THE ADVANTAGE OF CALCIUM ALUMINATE CEMENT CONTAINING CASTABLES FOR STEEL LADLE APPLICATIONS , 2004 .
[8] S. Mukhopadhyay,et al. Effect of preformed and in situ spinels on microstructure and properties of a low cement refractory castable , 2004 .
[9] W. E. Lee,et al. Influence of in situ phase formation on microstructural evolution and properties of castable refractories , 2002 .
[10] J. Chevalier,et al. Thermomechanical properties and fracture mechanisms of calcium hexaluminate , 2001 .
[11] S. Zhang,et al. Castable refractory concretes , 2001 .
[12] André R. Studart,et al. How mixing affects the rheology of refractory castables, Part 2 , 2001 .
[13] V. Pandolfelli,et al. Novel rheometer for refractory castables , 2000 .
[14] James E. Funk,et al. Particle packing. III: Discrete versus continuous particle sizes , 1992 .