The impact of pre-formed and in situ spinel formation on the physical properties of cement-bonded high alumina refractory castables

[1]  V. Pandolfelli,et al.  Microsilica Role in the CA6 Formation in Cement-Bonded Spinel Refractory Castables , 2009 .

[2]  V. Pandolfelli,et al.  Magnesia grain size effect on in situ spinel refractory castables , 2008 .

[3]  V. Pandolfelli,et al.  Microsilica Effects on Cement Bonded Alumina-Magnesia Refractory Castables , 2008 .

[4]  Mariana A. L. Braulio,et al.  Espinelização in-situ e seu efeito na resistência ao choque térmico de concretos refratários , 2008 .

[5]  C. Gault,et al.  Evolution of elastic properties and microstructural changes versus temperature in bonding phases of alumina and alumina–magnesia refractory castables , 2007 .

[6]  W. E. Lee,et al.  Spinel-Containing Refractories , 2004 .

[7]  B. Touzo,et al.  THE ADVANTAGE OF CALCIUM ALUMINATE CEMENT CONTAINING CASTABLES FOR STEEL LADLE APPLICATIONS , 2004 .

[8]  S. Mukhopadhyay,et al.  Effect of preformed and in situ spinels on microstructure and properties of a low cement refractory castable , 2004 .

[9]  W. E. Lee,et al.  Influence of in situ phase formation on microstructural evolution and properties of castable refractories , 2002 .

[10]  J. Chevalier,et al.  Thermomechanical properties and fracture mechanisms of calcium hexaluminate , 2001 .

[11]  S. Zhang,et al.  Castable refractory concretes , 2001 .

[12]  André R. Studart,et al.  How mixing affects the rheology of refractory castables, Part 2 , 2001 .

[13]  V. Pandolfelli,et al.  Novel rheometer for refractory castables , 2000 .

[14]  James E. Funk,et al.  Particle packing. III: Discrete versus continuous particle sizes , 1992 .