Engineering of microfabricated ion traps and integration of advanced on-chip features

Atomic ions trapped in electromagnetic potentials have long been used for fundamental studies in quantum physics. Over the past two decades, trapped ions have been successfully used to implement technologies such as quantum computing, quantum simulation, atomic clocks, mass spectrometers and quantum sensors. Advanced fabrication techniques, taken from other established or emerging disciplines, are used to create new, reliable ion-trap devices aimed at large-scale integration and compatibility with commercial fabrication. This Technical Review covers the fundamentals of ion trapping before discussing the design of ion traps for the aforementioned applications. We overview the current microfabrication techniques and the various considerations behind the choice of materials and processes. Finally, we discuss current efforts to include advanced, on-chip features in next-generation ion traps. Ion traps enable the precise control and manipulation of the quantum state of a trapped ion. This Technical Review discusses the way in which ion-trap microchips can be fabricated and integrated with advanced on-chip features for implementing practical quantum technologies. Trapped atomic ions are a highly versatile tool for a wide variety of fields from fundamental physics to quantum technologies. Ion traps use electric and magnetic fields to provide 3D confinement of ions in free space. Ion traps can be fabricated with greater ease by using a surface electrode structure integrated within a microchip. The realization of several quantum technologies that use trapped ions requires the integration of advanced features such as optics and electronics into such a microchip, either within a monolithic structure or through multi-wafer stacking. Development is in progress concerning the integration of multiple features, especially in terms of the compatibility of fabrication processes, chip modularity, functionality and exact specifications of the desired features.

[1]  Isaac L. Chuang,et al.  Laser-induced charging of microfabricated ion traps , 2011, 1108.0092.

[2]  Janus H. Wesenberg,et al.  Electrostatics of surface-electrode ion traps , 2008, 0808.1623.

[3]  A. Walther,et al.  Experimental realization of fast ion separation in segmented Paul traps , 2014 .

[4]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[5]  R. Bhatt,et al.  Quantum Entanglement as a Diagnostic of Phase Transitions in Disordered Fractional Quantum Hall Liquids. , 2016, Physical review letters.

[6]  D. J. Reilly,et al.  A Cryogenic Interface for Controlling Many Qubits , 2019, 1912.01299.

[7]  Dong-il Dan Cho,et al.  A review of silicon microfabricated ion traps for quantum information processing , 2015 .

[8]  Wolfgang Hansel,et al.  Trapped-ion probing of light-induced charging effects on dielectrics , 2010, 1004.4842.

[9]  S. Webster,et al.  Generation of spin-motion entanglement in a trapped ion using long-wavelength radiation , 2014, 1409.1862.

[10]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[11]  Rajeev J Ram,et al.  Ion traps fabricated in a CMOS foundry , 2014, 1406.3643.

[12]  D. M. Lucas,et al.  Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap , 2011, 1105.4864.

[13]  P. Hommelhoff,et al.  Bose–Einstein condensation on a microelectronic chip , 2001, Nature.

[14]  J. Krupka,et al.  Measurements of Permittivity, Dielectric Loss Tangent, and Resistivity of Float-Zone Silicon at Microwave Frequencies , 2006, IEEE Transactions on Microwave Theory and Techniques.

[15]  D. P. Pappas,et al.  Electric-field noise from carbon-adatom diffusion on a Au(110) surface: First-principles calculations and experiments , 2016, 1610.01079.

[16]  R. Bowler,et al.  Multi-element logic gates for trapped-ion qubits , 2015, Nature.

[17]  P. See,et al.  A compact UHV package for microfabricated ion-trap arrays with direct electronic air-side access , 2013 .

[18]  M. Hohenstatt,et al.  Localized visible Ba + mono-ion oscillator , 1980 .

[19]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[20]  J. Britton,et al.  Microfabricated Chip Traps for Ions , 2008, 0812.3907.

[21]  L. Deslauriers,et al.  T-junction ion trap array for two-dimensional ion shuttling, storage, and manipulation , 2005, quant-ph/0508097.

[22]  Siddhartha Santra,et al.  Quantum repeaters based on two species trapped ions , 2018, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[23]  Adrian L. Casias,et al.  A highly miniaturized vacuum package for a trapped ion atomic clock. , 2016, The Review of scientific instruments.

[24]  T. Jungwirth,et al.  Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet. , 2016, Physical review letters.

[25]  D. Leibfried,et al.  Measurements of trapped-ion heating rates with exchangeable surfaces in close proximity , 2017, 1701.04814.

[26]  Curtis Volin,et al.  Reliable transport through a microfabricated X-junction surface-electrode ion trap , 2012, 1210.3655.

[27]  Peter Maunz,et al.  Single qubit manipulation in a microfabricated surface electrode ion trap , 2013, 1306.1269.

[28]  E. Colgan,et al.  A practical implementation of silicon microchannel coolers for high power chips , 2005, Semiconductor Thermal Measurement and Management IEEE Twenty First Annual IEEE Symposium, 2005..

[29]  K. M. Knowles,et al.  Anodic bonding , 2006 .

[30]  Experiments with an Isolated Subatomic Particle at Rest (Nobel Lecture) , 1990 .

[31]  D. Moehring,et al.  Demonstration of a microfabricated surface electrode ion trap , 2010, 1008.0990.

[32]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[33]  Stefan Willitsch,et al.  Optimised surface-electrode ion-trap junctions for experiments with cold molecular ions , 2017, 1701.06408.

[34]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[35]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.

[36]  P Srinivasan,et al.  Fabrication and operation of a two-dimensional ion-trap lattice on a high-voltage microchip , 2014, Nature Communications.

[37]  A. Braun,et al.  Resonance-enhanced isotope-selective photoionization of YbI for ion trap loading , 2007, 0712.0969.

[38]  Peter Lukas Wilhelm Maunz,et al.  High Optical Access Trap 2.0. , 2016 .

[39]  T. Harty,et al.  High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves. , 2016, Physical review letters.

[40]  C. Ospelkaus,et al.  Surface-electrode Paul trap with optimized near-field microwave control , 2014 .

[41]  I. Chuang,et al.  Microfabricated surface ion trap on a high-finesse optical mirror. , 2010, Optics letters.

[42]  A. C. Wilson,et al.  Trapped-Ion Spin-Motion Coupling with Microwaves and a Near-Motional Oscillating Magnetic Field Gradient. , 2018, Physical review letters.

[43]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[44]  J. Kinnunen,et al.  Induced interactions in a superfluid Bose-Fermi mixture , 2015, 1502.00402.

[45]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[46]  J. G. Contreras,et al.  Pion, Kaon, and Proton Production in Central Pb-Pb Collisions at √sNN=2.76 TeV , 2012, 1208.1974.

[47]  S. Stenholm The semiclassical theory of laser cooling , 1986 .

[48]  A. M. Porcellato,et al.  Integration of RFQ beam coolers and solenoidal magnetic fields. , 2016, The Review of scientific instruments.

[49]  Robert M. Westervelt,et al.  Micro-electromagnets for atom manipulation , 1998 .

[50]  R. Blatt,et al.  Electric-field noise above a thin dielectric layer on metal electrodes , 2015, 1511.00624.

[51]  K. Blaum,et al.  Restoration of the N=82 shell gap from direct mass measurements of Sn-132,Sn-134 , 2008 .

[52]  M. Paris,et al.  Entangled quantum probes for dynamical environmental noise , 2015, 1503.03402.

[53]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[54]  K. Henttinen,et al.  Via Technologies for MEMS , 2015 .

[55]  C. Felser,et al.  Nanoscale three-dimensional reconstruction of electric and magnetic stray fields around nanowires , 2014 .

[56]  C. S. Pai,et al.  Scalable ion–photon quantum interface based on integrated diffractive mirrors , 2016, 1607.00100.

[57]  Curtis Volin,et al.  Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation , 2012, 1204.4147.

[58]  H. Häffner,et al.  Electric-field noise from thermally activated fluctuators in a surface ion trap , 2018, Physical Review A.

[59]  V. Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2018, Nature.

[60]  G. Potdevin,et al.  Nanoplasma dynamics of single large xenon clusters irradiated with superintense x-ray pulses from the linac coherent light source free-electron laser. , 2012, Physical review letters.

[61]  Charles R. Sullivan,et al.  Design of microfabricated inductors , 1996, PESC Record. 27th Annual IEEE Power Electronics Specialists Conference.

[62]  So-Young Baek,et al.  Individual addressing of trapped 171Yb+ ion qubits using a microelectromechanical systems-based beam steering system , 2014 .

[63]  N. Chandra,et al.  A genome-wide structure-based survey of nucleotide binding proteins in M. tuberculosis , 2017, Scientific Reports.

[64]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990 .

[65]  A. R. Ellis,et al.  Integration of fluorescence collection optics with a microfabricated surface electrode ion trap , 2010, 1008.2977.

[66]  Blagojce Jovcevski,et al.  Mass Spectrometry and Its Applications , 2019, Biomolecular and Bioanalytical Techniques.

[67]  M. Motta,et al.  Superconducting properties of corner-shaped Al microstrips , 2013, 1301.2564.

[68]  Toni T. Mattila,et al.  Chapter 41 – MEMS Reliability , 2015 .

[69]  Spencer D. Fallek,et al.  Ball-grid array architecture for microfabricated ion traps , 2014, 1412.5576.

[70]  A Retzker,et al.  Ultrasensitive Magnetometer using a Single Atom. , 2014, Physical review letters.

[71]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[72]  Isaac L. Chuang,et al.  Technologies for trapped-ion quantum information systems , 2015, Quantum Inf. Process..

[73]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[74]  Germany,et al.  Transport dynamics of single ions in segmented microstructured Paul trap arrays , 2006, quant-ph/0606237.

[75]  S. Kimura,et al.  磁場中でのS=1/2 擬一次元Ising様反強磁性体に関する新しい規則化 , 2008 .

[76]  C. Monroe,et al.  Quantum Repeaters Based on Two-Species Trapped Ions , 2018, 2018 IEEE Photonics Society Summer Topical Meeting Series (SUM).

[77]  P. Rabl,et al.  Microscopic model of electric-field-noise heating in ion traps , 2011, 1106.1949.

[78]  Michael Niedermayr,et al.  Cryogenic surface ion trap based on intrinsic silicon , 2014 .

[79]  Christof Wunderlich,et al.  High-Fidelity Preservation of Quantum Information During Trapped-Ion Transport. , 2017, Physical review letters.

[80]  B. Lanyon,et al.  Observation of entangled states of a fully-controlled 20 qubit system , 2017, 1711.11092.

[81]  D. Stick,et al.  Planar ion trap geometry for microfabrication , 2004 .

[82]  J. Schmiedmayer,et al.  Microscopic atom optics: from wires to an atom chip , 2008, 0805.2613.

[83]  Winfried K. Hensinger,et al.  Optimum electrode configurations for fast ion separation in microfabricated surface ion traps , 2010, 1007.3542.

[84]  F. Schmidt-Kaler,et al.  Assessing the progress of trapped-ion processors towards fault-tolerant quantum computation , 2017, 1705.02771.

[85]  B. Rubenstein,et al.  van der Waals-corrected density functional study of electric field noise heating in ion traps caused by electrode surface adsorbates , 2018, New Journal of Physics.

[86]  M. L. Wall,et al.  Quantum spin dynamics and entanglement generation with hundreds of trapped ions , 2015, Science.

[87]  R. Blatt,et al.  Ion-trap measurements of electric-field noise near surfaces , 2014, 1409.6572.

[88]  R. Blatt,et al.  Compact radio-frequency resonator for cryogenic ion traps. , 2012, The Review of scientific instruments.

[89]  T. Hänsch,et al.  Sub-Doppler laser spectroscopy on relativistic beams and tests of Lorentz invariance , 2009 .

[90]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[91]  W. Hensinger,et al.  On the application of radio frequency voltages to ion traps via helical resonators , 2011, 1106.5013.

[92]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[93]  K. R. Brown,et al.  Experimental investigation of planar ion traps , 2005, quant-ph/0511018.

[94]  W. Whitten,et al.  Microfabricated quadrupole ion trap for mass spectrometer applications. , 2006, Physical review letters.

[95]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[96]  Matthew Glenn Blain,et al.  Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps , 2004 .

[97]  G. A. Slack,et al.  Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point , 1964 .

[98]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[99]  Rajeev J. Ram,et al.  Precise and diffraction-limited waveguide-to-free-space focusing gratings , 2016, Scientific Reports.

[100]  Dietrich Leibfried,et al.  Optimal surface-electrode trap lattices for quantum simulation with trapped ions. , 2009, Physical review letters.

[101]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[102]  Peter Maunz,et al.  Arrays of individually controlled ions suitable for two-dimensional quantum simulations , 2016, Nature Communications.

[103]  V. Vuorinen,et al.  Metallic alloy seal bonding , 2020, Handbook of Silicon Based MEMS Materials and Technologies.

[104]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[105]  A. W. Hull The Reflection of Slow-Moving Electrons by Copper , 1916 .

[106]  Karl Berggren,et al.  Superconducting microfabricated ion traps , 2010, 1010.6108.

[107]  M A Alam,et al.  Observation of a strongly nested Fermi surface in the shape-memory alloy Ni0.62Al0.38. , 2006, Physical review letters.

[108]  C. J. Mellor,et al.  Increased surface flashover voltage in microfabricated devices , 2013 .

[109]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.

[110]  Rajeev J Ram,et al.  Integrated optical addressing of an ion qubit. , 2015, Nature nanotechnology.

[111]  Seokjun Hong,et al.  A New Microfabrication Method for Ion-Trap Chips That Reduces Exposure of Dielectric Surfaces to Trapped Ions , 2018, Journal of Microelectromechanical Systems.

[112]  T. Coudreau,et al.  Electric field noise above surfaces: A model for heating rate scaling law in ion traps , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[113]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[114]  Edoardo Charbon,et al.  Cryogenic CMOS interfaces for quantum devices , 2017, 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI).

[115]  L. Maleki,et al.  New ion trap for frequency standard applications , 1989 .

[116]  I. V. Inlek,et al.  Multispecies Trapped-Ion Node for Quantum Networking. , 2017, Physical review letters.

[117]  F. Schmidt-Kaler,et al.  Controlling the transport of an ion: classical and quantum mechanical solutions , 2013, 1312.4156.

[118]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[119]  A. Kraft,et al.  Measuring Anomalous Heating in a Planar Ion Trap with Variable Ion-Surface Separation. , 2017, Physical review letters.

[120]  A. Noguchi,et al.  Surface-electrode trap with an integrated permanent magnet for generating a magnetic-field gradient at trapped ions , 2016, 1610.00206.

[121]  P. Dawson Quadrupole mass spectrometry and its applications , 1976 .

[122]  Tobias Schaetz,et al.  Experimental quantum simulations of many-body physics with trapped ions , 2012, Reports on progress in physics. Physical Society.

[123]  C. Ospelkaus,et al.  Multilayer ion trap with three-dimensional microwave circuitry for scalable quantum logic applications , 2018, Applied Physics B.

[124]  Y. Colombe,et al.  Efficient fiber optic detection of trapped ion fluorescence. , 2010, Physical review letters.

[125]  I. L. Chuang,et al.  Chip-Integrated Voltage Sources for Control of Trapped Ions , 2019, Physical Review Applied.

[126]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[127]  Jakob Reichel,et al.  Atom chips. , 2005, Scientific American.

[128]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[129]  T. Suni,et al.  Silicon direct bonding , 2020, Handbook of Silicon Based MEMS Materials and Technologies.

[130]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[131]  A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps. , 2018, The Review of scientific instruments.

[132]  Curtis Volin,et al.  Demonstration of integrated microscale optics in surface-electrode ion traps , 2011, 1105.4905.

[133]  Isaac L. Chuang,et al.  Surface-electrode ion trap with integrated light source , 2011, 1103.5256.

[134]  Peter Maunz,et al.  An Integrated Mirror and Surface Ion Trap with a Tunable Trap Location , 2016, 1608.06923.

[135]  J. Font,et al.  Gravitational waves from the Papaloizou-Pringle instability in black-hole-torus systems. , 2011, Physical review letters.

[136]  Christian Kurtsiefer,et al.  Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap , 2002 .

[137]  Herbert Shea,et al.  MEMS Reliability , 2010 .

[138]  I D Conway Lamb,et al.  An FPGA-based instrumentation platform for use at deep cryogenic temperatures. , 2015, The Review of scientific instruments.

[139]  T. Schaetz,et al.  Interference in a Prototype of a Two-Dimensional Ion Trap Array Quantum Simulator. , 2018, Physical review letters.

[140]  J. Alonso,et al.  Optimal electrode geometries for 2-dimensional ion arrays with bi-layer ion traps , 2014, 1406.4727.

[141]  J. Chiaverini,et al.  Evidence for multiple mechanisms underlying surface electric-field noise in ion traps , 2018, Physical Review A.

[142]  Curtis Volin,et al.  In-vacuum active electronics for microfabricated ion traps. , 2014, The Review of scientific instruments.

[143]  Kenneth R. Brown,et al.  Heating rates and ion-motion control in a Y-junction surface-electrode trap , 2014 .

[144]  Guang Hao Low,et al.  Effects of electrode surface roughness on motional heating of trapped ions , 2016 .

[145]  J. Home,et al.  Segmented ion-trap fabrication using high precision stacked wafers , 2019, Review of Scientific Instruments.

[146]  J. D. Wong-Campos,et al.  Active stabilization of ion trap radiofrequency potentials. , 2016, The Review of scientific instruments.

[147]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[148]  D. Leibfried,et al.  UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. , 2016, Optics express.

[149]  M. Johanning,et al.  Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. , 2011, Physical review letters.

[150]  Michael Adams,et al.  Scalable digital hardware for a trapped ion quantum computer , 2015, Quantum Inf. Process..

[151]  N. Srikanth,et al.  Acid Decapsulation of Epoxy Molded IC Packages With Copper Wire Bonds , 2006, IEEE Transactions on Electronics Packaging Manufacturing.

[152]  H. Jakobsen,et al.  Chapter 30 – Anodic Bonding , 2015 .

[153]  D. M. Lucas,et al.  A microfabricated ion trap with integrated microwave circuitry , 2012, 1210.3272.

[154]  Simon J. Devitt,et al.  Blueprint for a microwave trapped ion quantum computer , 2015, Science Advances.

[155]  M. House,et al.  Analytic model for electrostatic fields in surface-electrode ion traps , 2008 .

[156]  Mirko Lobino,et al.  Integrated optics architecture for trapped-ion quantum information processing , 2016, Quantum Inf. Process..

[157]  Steven J. Clarke,et al.  Rent's rule and extensibility in quantum computing , 2018, Microprocess. Microsystems.

[158]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[159]  Andrea Benaglia,et al.  Transverse-Momentum and Pseudorapidity Distributions of Charged Hadrons in pp Collisions at root s=7 TeV , 2010 .

[160]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[161]  Integrated optical control and enhanced coherence of ion qubits via multi-wavelength photonics , 2020, 2001.05052.

[162]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[163]  Observation of three-mode parametric instability , 2013, 1303.4561.

[164]  John Chiaverini,et al.  Trapped-ion quantum computing: Progress and challenges , 2019, Applied Physics Reviews.

[165]  R. Blatt,et al.  Observation of superconductivity and surface noise using a single trapped ion as a field probe , 2019, Physical Review A.

[166]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[167]  T. Thomas,et al.  Photoelectron recoil in CO in the x-ray region up to 7 keV , 2017 .

[168]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[169]  T. Suni,et al.  Chapter 29 – Silicon Direct Bonding , 2015 .

[170]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[171]  I. Chuang,et al.  Motional heating in a graphene-coated ion trap. , 2014, Nano letters.

[172]  Hiroki Takahashi,et al.  Strong Coupling of a Single Ion to an Optical Cavity. , 2018, Physical review letters.

[173]  Christian Ospelkaus,et al.  Multilayer ion trap technology for scalable quantum computing and quantum simulation , 2018, New Journal of Physics.

[174]  Johannes Buchner,et al.  The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells , 2017, Scientific Reports.

[175]  David Hucul,et al.  On the transport of atomic ions in linear and multidimensional ion trap arrays , 2007, Quantum information & computation.

[176]  Micro-fabricated stylus ion trap. , 2013, The Review of scientific instruments.

[177]  Tommaso Calarco,et al.  Colloquium: Trapped ions as quantum bits: Essential numerical tools , 2009, 0912.0196.

[178]  Claudia Felser,et al.  Electronic structure of Pt based topological Heusler compounds with C1b structure and zero band gap , 2011 .

[179]  David J. Wineland,et al.  Laser cooling of atoms , 1979 .

[180]  Sae Woo Nam,et al.  High-speed low-crosstalk detection of a 171Yb+ qubit using superconducting nanowire single photon detectors , 2019, Communications Physics.

[181]  David J. Wineland,et al.  Surface science for improved ion traps , 2013 .

[182]  S. Olmschenk,et al.  Ion trap in a semiconductor chip , 2006 .

[183]  Teruaki Motooka,et al.  Handbook of Silicon Based MEMS Materials and Technologies: Second Edition , 2015 .

[184]  M. Vallès,et al.  Gallium nitride (GaN) devices as a platform technology for radiation hard inertial confinement fusion diagnostics. , 2018, The Review of scientific instruments.

[185]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[186]  David J. Wineland Superposition, Entanglement, and Raising Schrödinger's Cat , 2013 .

[187]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[188]  Isaac L. Chuang,et al.  Individual addressing of ions using magnetic field gradients in a surface-electrode ion trap , 2008, 0811.2422.

[189]  Roy L. Russo,et al.  On a Pin Versus Block Relationship For Partitions of Logic Graphs , 1971, IEEE Transactions on Computers.

[190]  F. Schmidt-Kaler,et al.  Spin and motion dynamics with zigzag ion crystals in transverse magnetic gradients , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[191]  E Banas,et al.  Measurement of the Inelastic Proton-Proton Cross Section at sqrt[s]=13  TeV with the ATLAS Detector at the LHC. , 2016, Physical review letters.

[192]  C. Monroe,et al.  Co-designing a scalable quantum computer with trapped atomic ions , 2016, npj Quantum Information.

[193]  Wineland,et al.  Ionic crystals in a linear Paul trap. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[194]  D. Stick,et al.  Design, fabrication and experimental demonstration of junction surface ion traps , 2011 .

[195]  Chi Zhang,et al.  Integrated optical multi-ion quantum logic. , 2020, Nature.

[196]  Anthony F. Bernhardt,et al.  Microchannel heatsink with liquid-nitrogen cooling , 1993, Optics & Photonics.

[197]  Keith Kim,et al.  HBM (High Bandwidth Memory) DRAM Technology and Architecture , 2017, 2017 IEEE International Memory Workshop (IMW).

[198]  U. Jentschura,et al.  Reexamining blackbody shifts for hydrogenlike ions , 2008, 0808.2365.

[199]  Isaac L. Chuang,et al.  Transparent ion trap with integrated photodetector , 2012, 1212.1443.

[200]  J. Chiaverini,et al.  Distance scaling of electric-field noise in a surface-electrode ion trap , 2018 .

[201]  A short response time atomic source for trapped ion experiments. , 2017, The Review of scientific instruments.

[202]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[203]  J. Chiaverini,et al.  Measurement of ion motional heating rates over a range of trap frequencies and temperatures , 2014, 1412.5119.

[204]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[205]  Patrick Gill,et al.  A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. , 2012, Nature nanotechnology.

[206]  A Tanaka,et al.  Spin state transition in LaCoO3 studied using soft x-ray absorption spectroscopy and magnetic circular dichroism. , 2006, Physical review letters.

[207]  D. Coyne LIGO Vacuum Compatible Materials List , 2004 .

[208]  F. Schmidt-Kaler,et al.  Dynamics and control of fast ion crystal splitting in segmented Paul traps , 2014, 1403.0097.

[209]  J. Britton,et al.  Arbitrary waveform generator for quantum information processing with trapped ions. , 2013, The Review of scientific instruments.

[210]  A Retzker,et al.  Trapped-Ion Quantum Logic with Global Radiation Fields. , 2016, Physical review letters.

[211]  Jeremy Sage,et al.  Reduction of trapped ion anomalous heating by in situ surface plasma cleaning , 2015 .

[212]  R. Schmied Electrostatics of gapped and finite surface electrodes , 2009, 0910.4517.

[213]  J. Chiaverini,et al.  Dual-species, multi-qubit logic primitives for Ca+/Sr+ trapped-ion crystals , 2019, npj Quantum Information.

[214]  Arkadas Ozakin,et al.  Stability analysis of ion motion in asymmetric planar ion traps , 2012 .

[215]  D. Tanner MEMS reliability , 2005, 2005 IEEE International Integrated Reliability Workshop.

[216]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[217]  D. Wineland,et al.  A 303-MHz frequency standard based on trapped Be/sup +/ ions , 1990, Conference on Precision Electromagnetic Measurements.

[218]  Mark Um,et al.  Single-qubit quantum memory exceeding ten-minute coherence time , 2017, 1701.04195.