A spectral-element discontinuous Galerkin lattice Boltzmann method for nearly incompressible flows

We present a spectral-element discontinuous Galerkin lattice Boltzmann method for solving nearly incompressible flows. Decoupling the collision step from the streaming step offers numerical stability at high Reynolds numbers. In the streaming step, we employ high-order spectral-element discontinuous Galerkin discretizations using a tensor product basis of one-dimensional Lagrange interpolation polynomials based on Gauss-Lobatto-Legendre grids. Our scheme is cost-effective with a fully diagonal mass matrix, advancing time integration with the fourth-order Runge-Kutta method. We present a consistent treatment for imposing boundary conditions with a numerical flux in the discontinuous Galerkin approach. We show convergence studies for Couette flows and demonstrate two benchmark cases with lid-driven cavity flows for Re=400-5000 and flows around an impulsively started cylinder for Re=550-9500. Computational results are compared with those of other theoretical and computational work that used a multigrid method, a vortex method, and a spectral element model.

[1]  Dhiraj V. Patil,et al.  Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh , 2009, J. Comput. Phys..

[2]  Alejandro L. Garcia,et al.  Stabilization of thermal lattice Boltzmann models , 1995 .

[3]  Cass T. Miller,et al.  An evaluation of lattice Boltzmann schemes for porous medium flow simulation , 2006 .

[4]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[5]  G. K. Leaf,et al.  Eulerian description of high-order bounce-back scheme for lattice Boltzmann equation with curved boundary , 2009 .

[6]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[7]  Taehun Lee,et al.  An Eulerian description of the streaming process in the lattice Boltzmann equation , 2003 .

[8]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[9]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[10]  R Zhang,et al.  Effective volumetric lattice Boltzmann scheme. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Richard Shock,et al.  Numerical study of flow past an impulsively started cylinder by the lattice-Boltzmann method , 2004, Journal of Fluid Mechanics.

[12]  D. Wolf-Gladrow Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction , 2000 .

[13]  Taehun Lee,et al.  A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame , 2006, J. Comput. Phys..

[14]  M. Carpenter,et al.  Fourth-order 2N-storage Runge-Kutta schemes , 1994 .

[15]  S. Chou,et al.  Finite-volume lattice Boltzmann method. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[16]  Michael C. Sukop,et al.  Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers , 2005 .

[17]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[18]  Shi Jin,et al.  Physical symmetry and lattice symmetry in the lattice Boltzmann method , 1997 .

[19]  Manfred Krafczyk,et al.  An upwind discretization scheme for the finite volume lattice Boltzmann method , 2006 .

[20]  T. Abe Derivation of the Lattice Boltzmann Method by Means of the Discrete Ordinate Method for the Boltzmann Equation , 1997 .

[21]  Petros Koumoutsakos,et al.  An immersed boundary-lattice-Boltzmann method for the simulation of the flow past an impulsively started cylinder , 2008, J. Comput. Phys..

[22]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[23]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[24]  L. Luo,et al.  Lattice Boltzmann Model for the Incompressible Navier–Stokes Equation , 1997 .

[25]  E. LeBoeuf,et al.  Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Ernst Rank,et al.  High‐order finite elements applied to the discrete Boltzmann equation , 2006 .

[27]  Victor Sofonea,et al.  Viscosity of finite difference lattice Boltzmann models , 2003 .

[28]  Taehun Lee,et al.  A characteristic Galerkin method for discrete Boltzmann equation , 2001 .

[29]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[30]  Chang Shu,et al.  Simulation of flows around an impulsively started circular cylinder by Taylor series expansion-and least squares-based lattice Boltzmann method , 2003 .

[31]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[32]  Pierre Lallemand,et al.  On lattice Boltzmann scheme, finite volumes and boundary conditions , 2008, 2306.15291.

[33]  A. Ladd,et al.  Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Francis X. Giraldo,et al.  A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..

[35]  Jianzhong Lin,et al.  Discontinuous Galerkin spectral element lattice Boltzmann method on triangular element , 2003 .

[36]  Li-Shi Luo,et al.  Some Progress in Lattice Boltzmann Method. Part I. Nonuniform Mesh Grids , 1996 .

[37]  P. Koumoutsakos,et al.  High-resolution simulations of the flow around an impulsively started cylinder using vortex methods , 1995, Journal of Fluid Mechanics.

[38]  Francis X. Giraldo,et al.  A high‐order triangular discontinuous Galerkin oceanic shallow water model , 2008 .

[39]  L. Luo,et al.  Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model , 1997 .

[40]  S. Succi,et al.  Lattice Boltzmann method on unstructured grids: further developments. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Wei Shyy,et al.  On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates , 1998 .

[42]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[43]  André Bardow,et al.  General characteristic-based algorithm for off-lattice Boltzmann simulations , 2006 .