Propagation via lazy clause generation

Finite domain propagation solvers effectively represent the possible values of variables by a set of choices which can be naturally modelled as Boolean variables. In this paper we describe how to mimic a finite domain propagation engine, by mapping propagators into clauses in a SAT solver. This immediately results in strong nogoods for finite domain propagation. But a naive static translation is impractical except in limited cases. We show how to convert propagators to lazy clause generators for a SAT solver. The resulting system introduces flexibility in modelling since variables are modelled dually in the propagation engine and the SAT solver, and we explore various approaches to the dual modelling. We show that the resulting system solves many finite domain problems significantly faster than other techniques.

[1]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[2]  Ian P. Gent Arc Consistency in SAT , 2002, ECAI.

[3]  Simon de Givry,et al.  Radio Link Frequency Assignment , 1999, Constraints.

[4]  Bart Selman,et al.  Planning as Satisfiability , 1992, ECAI.

[5]  Olivier Roussel Some notes on the implementation of csp2sat+zchaff, a simple translator from CSP to SAT , 2005 .

[6]  Christian Schulte,et al.  Views and Iterators for Generic Constraint Implementations , 2005, CSCLP.

[7]  Peter J. Stuckey,et al.  Modelling for Lazy Clause Generation , 2008, CATS.

[8]  Pedro Barahona,et al.  PSICO: Solving Protein Structures with Constraint Programming and Optimization , 2002, Constraints.

[9]  Rina Dechter,et al.  Principles and Practice of Constraint Programming – CP 2000 , 2001, Lecture Notes in Computer Science.

[10]  Olivier Bailleux,et al.  Efficient CNF Encoding of Boolean Cardinality Constraints , 2003, CP.

[11]  Mutsunori Banbara,et al.  Compiling Finite Linear CSP into SAT , 2006, CP.

[12]  Peter J. Stuckey,et al.  A Hybrid BDD and SAT Finite Domain Constraint Solver , 2006, PADL.

[13]  Toby Walsh,et al.  SAT v CSP , 2000, CP.

[14]  Christian Bessiere,et al.  Proceedings of the 13th international conference on Principles and practice of constraint programming , 2007 .

[15]  Fahiem Bacchus,et al.  Unrestricted Nogood Recording in CSP Search , 2003, CP.

[16]  Peter J. Stuckey,et al.  Programming with Constraints: An Introduction , 1998 .

[17]  Cesare Tinelli,et al.  Abstract DPLL and Abstract DPLL Modulo Theories , 2005, LPAR.

[18]  Peter J. Stuckey,et al.  Removing propagation redundant constraints in redundant modeling , 2007, TOCL.

[19]  Pascal Van Hentenryck,et al.  Design, Implementation, and Evaluation of the Constraint Language cc(FD) , 1994, Constraint Programming.

[20]  Peter J. Stuckey,et al.  Propagation Redundancy in Redundant Modelling , 2003, CP.

[21]  Fahiem Bacchus,et al.  Generalized NoGoods in CSPs , 2005, AAAI.

[22]  Simon Kasif,et al.  On the Parallel Complexity of Discrete Relaxation in Constraint Satisfaction Networks , 1990, Artif. Intell..

[23]  Carlos Ansótegui,et al.  Mapping Problems with Finite-Domain Variables into Problems with Boolean Variables , 2004, SAT.

[24]  Rina Dechter,et al.  Constraint Processing , 1995, Lecture Notes in Computer Science.

[25]  Philippe Laborie,et al.  Complete MCS-Based Search: Application to Resource Constrained Project Scheduling , 2005, IJCAI.

[26]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[27]  James Harland,et al.  Theory of Computing 2008. Proc. Fourteenth Computing: The Australasian Theory Symposium (CATS 2008), Wollongong, NSW, Australia, January 22-25, 2008. Proceedings , 2008, CATS.

[28]  Peter J. Stuckey,et al.  Propagation = Lazy Clause Generation , 2007, CP.

[30]  James M. Crawford,et al.  Experimental Results on the Application of Satisfiability Algorithms to Scheduling Problems , 1994, AAAI.

[31]  Francesca Rossi,et al.  Principles and Practice of Constraint Programming – CP 2003 , 2003, Lecture Notes in Computer Science.

[32]  Niklas Sörensson,et al.  Translating Pseudo-Boolean Constraints into SAT , 2006, J. Satisf. Boolean Model. Comput..