Multinuclear (67Zn, 119Sn and 65Cu) NMR spectroscopy--an ideal technique to probe the cationic ordering in Cu2ZnSnS4 photovoltaic materials.

For the very first time, (67)Zn, (119)Sn and (65)Cu NMR investigations have been carried out on Cu2ZnSnS4 derivatives (CZTS) for photovoltaic applications. NMR spectroscopy is shown to be sensitive enough to probe the Cu/Zn disorder within the kesterite structure of the studied compounds. In addition, reference spectra of Cu2ZnSnS4 are provided, and experimental (67)Zn and (65)Cu parameters are compared with ab initio calculations.

[1]  S. Jobic,et al.  Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds. , 2012, Inorganic chemistry.

[2]  Budhika G. Mendis,et al.  Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy , 2014 .

[3]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[4]  Joan Ramon Morante,et al.  Raman scattering and disorder effect in Cu2ZnSnS4 , 2013 .

[5]  S. Jobic,et al.  Crystal Structures of Photovoltaic Chalcogenides, an Intricate Puzzle to Solve: the Cases of CIGSe and CZTS Materials† , 2012 .

[6]  S. Siebentritt Why are kesterite solar cells not 20% efficient? , 2013 .

[7]  Aron Walsh,et al.  Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights , 2009 .

[8]  J. Morante,et al.  Vibrational properties of stannite and kesterite type compounds: Raman scattering analysis of Cu2(Fe,Zn)SnS4 , 2012 .

[9]  T. Raadik,et al.  The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy , 2012 .

[10]  G. Kresse,et al.  Defect formation and phase stability of Cu 2 ZnSnS 4 photovoltaic material , 2010 .

[11]  S. Schorr The crystal structure of kesterite type compounds: A neutron and X-ray diffraction study , 2011 .

[12]  Tayfun Gokmen,et al.  Beyond 11% Efficiency: Characteristics of State‐of‐the‐Art Cu2ZnSn(S,Se)4 Solar Cells , 2013 .

[13]  J. M. Stewart,et al.  Kesterite, Cu<2) (Zn,Fe)SnS<4) , and stannite, Cu<2) (Fe,Zn)SnS<4) , structurally similar but distinct minerals , 1978 .

[14]  T. Unold,et al.  Free-to-bound recombination in near stoichiometric Cu 2 ZnSnS 4 single crystals , 2012 .

[15]  M. Tovar,et al.  A neutron diffraction study of the stannite-kesterite solid solution series , 2007 .

[16]  S. Delbos Kësterite thin films for photovoltaics : a review , 2012 .

[17]  S. N. Stuart,et al.  NMR Study of the Zinc Chalcogenides (ZnX, X = O, S, Se, Te) , 1988 .

[18]  I. Forbes,et al.  New routes to sustainable photovoltaics: evaluation of Cu2ZnSnS4 as an alternative absorber material , 2008 .

[19]  Dan Huang,et al.  Band gap change induced by defect complexes in Cu2ZnSnS4 , 2013 .