Synergy between CALIOP and MODIS instruments for aerosol monitoring: application to the Po Valley

We propose here a synergy between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations/Cloud-Aerosol LIdar with Orthogonal Polarization (CALIPSO/CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra in order to retrieve aerosol optical properties over the Po Valley from June 2006 to February 2009. Such an approach gives simultaneously access to the aerosol extinction vertical profile and to the equivalent backscatter-to-extinction ratio at 532 nm (BER, inverse of the lidar ratio). The choice of the Po valley has been driven by the great occurrences of pollutant events leading to a mean MODIS-derived aerosol optical thickness of 0.27(±0.17) at 550 nm over a large area of ~120 000 km2

[1]  D. Müller,et al.  Estimation of the microphysical aerosol properties over Thessaloniki, Greece, during the SCOUT‐O3 campaign with the synergy of Raman lidar and Sun photometer data , 2010 .

[2]  V. Freudenthaler,et al.  EARLINET correlative measurements for CALIPSO: First intercomparison results , 2010 .

[3]  S. Loaëc,et al.  Simultaneous observations of lower tropospheric continental aerosols with a ground‐based, an airborne, and the spaceborne CALIOP lidar system , 2010 .

[4]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[5]  P. Chazette,et al.  A new generation of mobile Raman lidar: Ap plication to MEGAPOLI project , 2009 .

[6]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[7]  Patrick Chazette,et al.  Assessment of vertically-resolved PM10 from mobile lidar observations , 2009 .

[8]  Albert Ansmann,et al.  Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM , 2009 .

[9]  Gerard Capes,et al.  Overview of the Dust and Biomass‐burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period‐0 , 2008 .

[10]  Jacques Pelon,et al.  Comparison of cloud statistics from spaceborne lidar systems , 2008 .

[11]  N. Christina Hsu,et al.  Retrievals of aerosol single‐scattering albedo and effective aerosol layer height for biomass‐burning smoke: Synergy derived from “A‐Train” sensors , 2008 .

[12]  Patrick Chazette,et al.  Radiative budget in the presence of multi-layered aerosol structures in the framework of AMMA SOP-0 , 2008 .

[13]  Soon-Chang Yoon,et al.  Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea , 2008 .

[14]  K. Sassen,et al.  Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements , 2008 .

[15]  David M. Winker,et al.  CALIPSO lidar observations of the optical properties of Saharan dust: A case study of long‐range transport , 2008 .

[16]  Detlef Müller,et al.  Seasonal characteristics of lidar ratios measured with a Raman lidar at Gwangju, Korea in spring and autumn , 2008 .

[17]  H. Chepfer,et al.  Polar stratospheric clouds over Antarctica from the CALIPSO spaceborne lidar , 2008 .

[18]  Patrick Chazette,et al.  New approach for aerosol profiling with a lidar onboard an ultralight aircraft: application to the African Monsoon Multidisciplinary Analysis. , 2007, Environmental science & technology.

[19]  David M. Winker,et al.  CALIPSO observations of stratospheric aerosols: a preliminary assessment , 2007 .

[20]  A. Ansmann,et al.  Aerosol-type-dependent lidar ratios observed with Raman lidar , 2007 .

[21]  S. Ramachandran Aerosol optical depth and fine mode fraction variations deduced from Moderate Resolution Imaging Spectroradiometer (MODIS) over four urban areas in India , 2007 .

[22]  Patrick Chazette,et al.  Vertical profiles of urban aerosol complex refractive index in the frame of ESQUIF airborne measurements , 2007 .

[23]  G. Leeuw,et al.  Aerosol Direct Radiative Impact Experiment (ADRIEX) overview , 2007 .

[24]  Patrick Chazette,et al.  Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment , 2007 .

[25]  Soon-Chang Yoon,et al.  Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements , 2007 .

[26]  Mark Lawrence,et al.  Regional pollution potentials of megacities and other major population centers , 2006 .

[27]  Jacques Pelon,et al.  Desert dust aerosol columnar properties over ocean and continental Africa from Lidar in-Space Technology Experiment (LITE) and Meteosat synergy , 2006 .

[28]  O. Dubovik,et al.  Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations , 2005 .

[29]  M. Facchini,et al.  Cloud condensation nucleus production from nucleation events at a highly polluted region , 2005 .

[30]  G. Zibordi,et al.  Aerosol variability in the Po Valley analyzed from automated optical measurements , 2005 .

[31]  C. Flamant,et al.  Optical properties of urban aerosol from airborne and ground‐based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program , 2005 .

[32]  G. Gobbi,et al.  Aerosol seasonal variability over the Mediterranean region and relative impact of maritime, continental and Saharan dust particles over the basin from MODIS data in the year 2001 , 2004 .

[33]  David M. Winker,et al.  Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products , 2004, SPIE Remote Sensing.

[34]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[35]  Daniele Bortoli,et al.  First comparison between ground-based and satellite-borne measurements of tropospheric nitrogen dioxide in the Po basin , 2004 .

[36]  Paolo Bonasoni,et al.  Aerosol-ozone correlations during dust transport episodes , 2004 .

[37]  Albert Ansmann,et al.  Multiyear aerosol observations with dual‐wavelength Raman lidar in the framework of EARLINET , 2004 .

[38]  Mark A. Vaughan,et al.  Algorithm for retrieving lidar ratios at 1064 nm from space-based lidar backscatter data , 2004, SPIE Remote Sensing.

[39]  F. Dulac,et al.  Airborne study of a multi-layer aerosol structure in the eastern Mediterranean observed with the airborne polarized lidar ALEX during a STAAARTE campaign (7 June 1997) , 2003 .

[40]  Patrick Chazette,et al.  The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar , 2003 .

[41]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[42]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[43]  Bernhard Vogel,et al.  Sensitivity of photooxidant production in the Milan Basin: An overview of results from a EUROTRAC‐2 Limitation of Oxidant Production field experiment , 2002 .

[44]  D. Tanré,et al.  Characterization of aerosol spatial distribution and optical properties over the Indian Ocean from airborne LIDAR and radiometry during INDOEX'99 , 2002 .

[45]  B. Holben,et al.  Validation of MODIS aerosol optical depth retrieval over land , 2002 .

[46]  Michaël Sicard,et al.  Variational method for the retrieval of the optical thickness and the backscatter coefficient from multiangle lidar profiles. , 2002, Applied optics.

[47]  Albert Ansmann,et al.  Vertical profiling of optical and physical particle properties over the tropical Indian Ocean with six‐wavelength lidar: 2. Case studies , 2001 .

[48]  A. Ansmann,et al.  European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast , 2001 .

[49]  J. Pelon,et al.  Lidar and satellite retrieval of dust aerosols over the Azores during SOFIA/ASTEX , 2001 .

[50]  J. Pelon,et al.  Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers. , 2001, Applied optics.

[51]  Mark J. Rood,et al.  In situ measurement of the aerosol extinction‐to‐backscatter ratio at a polluted continental site , 2000 .

[52]  Piet Stammes,et al.  Multispectral aerosol optical thickness at De Bilt, 1997–1999 , 2000 .

[53]  Alexandros Papayannis,et al.  Characterization of the vertical structure of Saharan dust export to the Mediterranean basin , 1999 .

[54]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[55]  J. Pelon,et al.  Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post‐volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo , 1995 .

[56]  A. Ansmann,et al.  Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar. , 1992, Applied optics.

[57]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[58]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[59]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[60]  R. Measures Laser remote sensing : fundamentals and applications , 1984 .

[61]  Vincent Haufroid,et al.  Toxicologie industrielle et intoxications professionnelles , 1982 .

[62]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.