Fluid-Acoustics Interaction on Massively Parallel Systems

To simulate fluid-acoustics interaction, we couple inviscid Euler equations in the near-field, which is relevant for noise generation, to linearized Euler equations in the far-field. This allows us to separate the critical scales and treat each domain with an individual discretization. Both fields are computed by the high-order discontinuous Galerkin solver Ateles, while we couple the solvers at the interface by the library preCICE. We discuss a detailed performance analysis of the coupled simulation on massively parallel systems. Furthermore, to show the full potential of our approach, we simulate a flow around a sphere.