Development and characterization of a new rat ocular hypertension model induced by intracameral injection of conjunctival fibroblasts

[1]  Eun Ji Lee,et al.  Factors Associated with the Retinal Nerve Fiber Layer Loss after Acute Primary Angle Closure: A Prospective EDI-OCT Study , 2017, PloS one.

[2]  S. Yazdani,et al.  Neuroprotection in Glaucoma , 2016, Journal of ophthalmic & vision research.

[3]  B. Turgut,et al.  Neuroprotective and antioxidant effects of ghrelin in an experimental glaucoma model , 2015, Drug design, development and therapy.

[4]  Hiroshi Murata,et al.  A model for the easy assessment of pressure-dependent damage to retinal ganglion cells using cyan fluorescent protein–expressing transgenic mice , 2012, Molecular vision.

[5]  Ruikang K. Wang,et al.  Impact of intraocular pressure on changes of blood flow in the retina, choroid, and optic nerve head in rats investigated by optical microangiography , 2012, Biomedical optics express.

[6]  David J. Calkins,et al.  Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action , 2012, Expert review of ophthalmology.

[7]  C. Mayama,et al.  Establishment of an experimental ferret ocular hypertension model for the analysis of central visual pathway damage , 2012, Scientific Reports.

[8]  Juan Reynaud,et al.  Deformation of the rodent optic nerve head and peripapillary structures during acute intraocular pressure elevation. , 2011, Investigative ophthalmology & visual science.

[9]  John C Morrison,et al.  Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma. , 2011, Experimental eye research.

[10]  H. Quigley Glaucoma , 2011, The Lancet.

[11]  Y. Chan,et al.  Changes in retinal nerve fibre layer, optic nerve head morphology, and visual field after acute primary angle closure , 2011, Eye.

[12]  Ruikang K. Wang,et al.  Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography , 2011, Biomedical optics express.

[13]  Guochun Chen,et al.  Optic neuropathy due to microbead-induced elevated intraocular pressure in the mouse. , 2011, Investigative ophthalmology & visual science.

[14]  H. Quigley,et al.  The in vitro inflation response of mouse sclera. , 2010, Experimental eye research.

[15]  Danyi Wang,et al.  Mechanisms of retinal ganglion cell injury and defense in glaucoma. , 2010, Experimental eye research.

[16]  María Hernández,et al.  Immunohistochemical changes in rat retinas at various time periods of elevated intraocular pressure , 2009, Molecular vision.

[17]  M. Bottlang,et al.  Scleral biomechanics in the aging monkey eye. , 2009, Investigative ophthalmology & visual science.

[18]  吕一旭 Yixu Lu 引言 (Introduction) , 2009, Provincial China.

[19]  S. Thanos,et al.  Retinal gene profiling in a hereditary rodent model of elevated intraocular pressure. , 2006, Molecular vision.

[20]  N. Yoshimura,et al.  A rat model of glaucoma induced by episcleral vein ligation. , 2006, Experimental eye research.

[21]  Robert N Weinreb,et al.  Regional optic nerve damage in experimental mouse glaucoma. , 2004, Investigative ophthalmology & visual science.

[22]  D. Friedman,et al.  An evidence-based assessment of risk factors for the progression of ocular hypertension and glaucoma. , 2004, American journal of ophthalmology.

[23]  Bang V Bui,et al.  Selective ganglion cell functional loss in rats with experimental glaucoma. , 2004, Investigative ophthalmology & visual science.

[24]  Young H. Kwon,et al.  Laser-induced mouse model of chronic ocular hypertension. , 2003, Investigative ophthalmology & visual science.

[25]  E. E. Hartmann,et al.  The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. , 2002, Archives of ophthalmology.

[26]  Lin Wang,et al.  Immunohistologic evidence for retinal glial cell changes in human glaucoma. , 2002, Investigative ophthalmology & visual science.

[27]  H. Quigley,et al.  Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. , 2002, Investigative ophthalmology & visual science.

[28]  L. Wheeler,et al.  Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. , 2001, Investigative ophthalmology & visual science.

[29]  A. Sawada,et al.  Confirmation of the rat model of chronic, moderately elevated intraocular pressure. , 1999, Experimental eye research.

[30]  K. Yaoeda,et al.  Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. , 1998, Japanese journal of ophthalmology.

[31]  D. Zack,et al.  TUNEL-positive ganglion cells in human primary open-angle glaucoma. , 1997, Archives of ophthalmology.

[32]  S. Sharma,et al.  Chronic ocular hypertension following episcleral venous occlusion in rats. , 1995, Experimental eye research.

[33]  D. Gaasterland,et al.  Laser-induced primate glaucoma. I. Progression of cupping. , 1984, Archives of ophthalmology.

[34]  J. Pederson,et al.  Laser-induced primate glaucoma. II. Histopathology. , 1984, Archives of ophthalmology.

[35]  H. Quigley Use of Animal Models and Techniques in Glaucoma Research: Introduction. , 2018, Methods in molecular biology.

[36]  Jingjing Huang,et al.  Damage patterns of retinal nerve fiber layer in acute and chronic intraocular pressure elevation in primary angle closure glaucoma. , 2010, International journal of ophthalmology.

[37]  David J. Calkins,et al.  The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. , 2010, Investigative ophthalmology & visual science.

[38]  W. Hare,et al.  Characterization of retinal injury using ERG measures obtained with both conventional and multifocal methods in chronic ocular hypertensive primates. , 2001, Investigative ophthalmology & visual science.

[39]  C. Meshul,et al.  A rat model of chronic pressure-induced optic nerve damage. , 1997, Experimental eye research.

[40]  H A Quigley,et al.  Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. , 1981, Archives of ophthalmology.