Characterization and Biosynthesis of a Rare Fungal Hopane-Type Triterpenoid Glycoside Involved in the Antistress Property of Aspergillus fumigatus.

A rare fungal hopane-type triterpenoid glycoside fumihopaside A was identified by genome mining in combination with HPLC-MS/MS in Aspergillus fumigatus. Combining genetic deletions in A. fumigatus with heterologous reconstitutions in Aspergillus nidulans of the afum gene cluster, we identified one fungal squalene hopane cyclase AfumA charging the cyclization of the hopene skeleton, one cytochrome P450, and one UDP-glycosyltransferase. Bioassays indicated that fumihopaside A plays important roles in protecting A. fumigatus against heat or ultraviolet stress.

[1]  M. Stadler,et al.  Hyfraxins A and B, cytotoxic ergostane-type steroid and lanostane triterpenoid glycosides from the invasive ash dieback ascomycete Hymenoscyphus fraxineus , 2018, Steroids.

[2]  S. Belmain,et al.  Pesticidal plants in Africa: A global vision of new biological control products from local uses , 2017 .

[3]  Shihua Wang,et al.  A cryptic pigment biosynthetic pathway uncovered by heterologous expression is essential for conidial development in Pestalotiopsis fici , 2017, Molecular microbiology.

[4]  D. Newman Screening and identification of novel biologically active natural compounds , 2017, F1000Research.

[5]  W. Nierman,et al.  Secondary metabolite arsenal of an opportunistic pathogenic fungus , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  A. Rokas,et al.  Regulation of Secondary Metabolism by the Velvet Complex Is Temperature-Responsive in Aspergillus , 2016, G3: Genes, Genomes, Genetics.

[7]  O. I. Zhuravleva,et al.  Isolation and structures of virescenosides from the marine-derived fungus Acremonium striatisporum , 2016 .

[8]  Clay C C Wang,et al.  Development of Genetic Dereplication Strains in Aspergillus nidulans Results in the Discovery of Aspercryptin. , 2016, Angewandte Chemie.

[9]  M. Netea,et al.  Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. , 2016, Cell host & microbe.

[10]  O. Lavrynenko,et al.  Hopanoids as functional analogues of cholesterol in bacterial membranes , 2015, Proceedings of the National Academy of Sciences.

[11]  M. Valvano,et al.  Elucidation of the Burkholderia cenocepacia hopanoid biosynthesis pathway uncovers functions for conserved proteins in hopanoid-producing bacteria. , 2015, Environmental microbiology.

[12]  T. C. White,et al.  Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. , 2013, ACS synthetic biology.

[13]  B. Nestl,et al.  Squalene hopene cyclases: highly promiscuous and evolvable catalysts for stereoselective CC and CX bond formation. , 2013, Current opinion in chemical biology.

[14]  F. Schroeder,et al.  A nonribosomal peptide synthetase-derived iron(III) complex from the pathogenic fungus Aspergillus fumigatus. , 2013, Journal of the American Chemical Society.

[15]  A. Brakhage,et al.  Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence , 2013, Front. Microbio..

[16]  P. Kongsaeree,et al.  Lanostane and hopane triterpenes from the entomopathogenic fungus Hypocrella sp. BCC 14524. , 2011, Journal of natural products.

[17]  M. Isaka,et al.  Bioactive compounds from the scale insect pathogenic fungus Conoideocrella tenuis BCC 18627. , 2011, Journal of natural products.

[18]  M. Netea,et al.  Aspergillus fumigatus conidial melanin modulates host cytokine response. , 2010, Immunobiology.

[19]  Liangdong Guo,et al.  Allenyl and alkynyl phenyl ethers from the endolichenic fungus Neurospora terricola. , 2009, Journal of natural products.

[20]  Weiming Zhu,et al.  2-Hydroxydiplopterol, a new cytotoxic pentacyclic triterpenoid from the halotolerant fungus Aspergillus variecolor B-17 , 2009, Archives of pharmacal research.

[21]  T. Frickey,et al.  Phylogenetic analysis of the triterpene cyclase protein family in prokaryotes and eukaryotes suggests bidirectional lateral gene transfer. , 2009, Environmental microbiology.

[22]  K. Kimura,et al.  Isopimarane diterpene glycosides, apoptosis inducers, obtained from fruiting bodies of the ascomycete Xylaria polymorpha. , 2009, Phytochemistry.

[23]  Hubertus Haas,et al.  SreA-mediated iron regulation in Aspergillus fumigatus , 2008, Molecular microbiology.

[24]  N. Hywel-Jones,et al.  Comparison of the Bioactive Secondary Metabolites from the Scale Insect Pathogens, Anamorph Paecilomyces cinnamomeus, and Teleomorph Torrubiella luteorostrata , 2007, The Journal of Antibiotics.

[25]  T. Hoshino,et al.  Squalene-hopene cyclase: catalytic mechanism and substrate recognition. , 2002, Chemical communications.

[26]  P. Kittakoop,et al.  A New Antimycobacterial, 3β-Acetoxy-15α,22-dihydroxyhopane, from the Insect Pathogenic Fungus Aschersonia tubulata , 2001 .

[27]  T. Nakanishi,et al.  Constituents of a fern, Diplazium subsinuatum. III. Four new hopane-triterpene lactone glycosides. , 2000, Chemical & pharmaceutical bulletin.

[28]  M. Rohmer,et al.  The hopanoids of the purple non-sulfur bacteria Rhodopseudomonas palustris and Rhodopseudomonas acidophila and the absolute configuration of bacteriohopanetetrol. , 1988, European journal of biochemistry.

[29]  K. Poralla,et al.  Effect of temperature and pH on the hopanoid content of Bacillus acidocaldarius , 1984 .

[30]  K. Poralla,et al.  Monolayer and calorimetric studies of phosphatidylcholines containing branched-chain fatty acids and of their interactions with cholesterol and with a bacterial hopanoid in model membranes , 1983 .

[31]  M. M. Li,et al.  Six new triterpenoids and other triterpenoids and steroids from three Quercus species of Hong Kong. , 1977, Journal of the Chemical Society. Perkin transactions 1.