A transversal property for permutation groups motivated by partial transformations

[1]  P. Cameron,et al.  Primitive permutation groups and strongly factorizable transformation semigroups , 2019, Journal of Algebra.

[2]  P. Cameron,et al.  The existential transversal property: A generalization of homogeneity and its impact on semigroups , 2018, Transactions of the American Mathematical Society.

[3]  Michael A. Rodriguez,et al.  Groupoids , 2019, An Introduction to Groups, Groupoids and Their Representations.

[4]  M. Muzychuk,et al.  Finite primitive groups of small rank: symmetric and sporadic groups , 2019, Journal of Algebraic Combinatorics.

[5]  Cheryl E. Praeger,et al.  Primitive permutation groups with a suborbit of length 5 and vertex-primitive graphs of valency 5 , 2016, J. Comb. Theory, Ser. A.

[6]  G. Royle,et al.  Primitive groups, graph endomorphisms and synchronization , 2016 .

[7]  P. Cameron,et al.  Orbits of Primitive $k$-Homogenous Groups on $(n-k)$-Partitions with Applications to Semigroups , 2015, 1512.05608.

[8]  Peter J. Cameron,et al.  Between primitive and 2-transitive: Synchronization and its friends , 2015, 1511.03184.

[9]  P. Cameron,et al.  Permutation groups and transformation semigroups: results and problems , 2013, 1308.3585.

[10]  Peter J. Cameron,et al.  Primitive groups synchronize non-uniform maps of extreme ranks , 2013, J. Comb. Theory B.

[11]  Peter J. Cameron,et al.  Groups synchronizing a transformation of non-uniform kernel , 2012, Theor. Comput. Sci..

[12]  P. Cameron,et al.  Two generalizations of homogeneity in groups with applications to regular semigroups , 2012, 1204.2195.

[13]  Cheryl E. Praeger,et al.  The classification of almost simple $\tfrac{3}2$-transitive groups , 2011, 1103.6069.

[14]  Csaba Schneider,et al.  Groups that together with any transformation generate regular semigroups or idempotent generated semigroups , 2009, 0911.0445.

[15]  Peter M. Neumann Primitive permutation groups and their section-regular partitions , 2009 .

[16]  Peter J. Cameron,et al.  CORES OF SYMMETRIC GRAPHS , 2008, Journal of the Australian Mathematical Society.

[17]  Min-Wise Independent Families with Respect to any Linear Order , 2007 .

[18]  Benjamin Steinberg,et al.  Synchronizing groups and automata , 2006, Theor. Comput. Sci..

[19]  I. Levi,et al.  Groups Associated with Finite Transformation Semigroups , 2000 .

[20]  A. Paterson,et al.  Groupoids, Inverse Semigroups, and their Operator Algebras , 1998 .

[21]  Semigroups generated by a group and an idempotent , 1998 .

[22]  Inessa Levi,et al.  On the inner automorphisms of finite transformation semigroups , 1996, Proceedings of the Edinburgh Mathematical Society.

[23]  J. Howie Fundamentals of semigroup theory , 1995 .

[24]  Sn-normal semigroups , 1994 .

[25]  Jie Wang,et al.  The primitive permutation groups with an orbital of length 4 , 1992 .

[26]  Martin W. Liebeck,et al.  The Affine Permutation Groups of Rank Three , 1987 .

[27]  Martin W. Liebeck,et al.  The Finite Primitive Permutation Groups of Rank Three , 1986 .

[28]  William M. Kantor,et al.  The rank 3 permutation representations of the finite classical groups , 1982 .

[29]  D. E. Taylor Regular 2‐Graphs , 1977 .

[30]  M. Watkins Connectivity of transitive graphs , 1970 .

[31]  W. J. Wong,et al.  Determination of a class of primitive permutation groups , 1967 .

[32]  Charles C. Sims,et al.  Graphs and finite permutation groups , 1967 .

[33]  Ascher Wagner,et al.  Transitivity of finite permutation groups on unordered sets , 1965 .

[34]  Proceedings of the London Mathematical Society , 1881, Nature.