Outdoor Mapping and Navigation Using Stereo Vision

We consider the problem of autonomous navigation in an unstructured outdoor environment. The goal is for a small outdoor robot to come into a new area, learn about and map its environment, and move to a given goal at modest speeds (1 m/s). This problem is especially difficult in outdoor, off-road environments, where tall grass, shadows, deadfall, and other obstacles predominate. Not surprisingly, the biggest challenge is acquiring and using a reliable map of the new area. Although work in outdoor navigation has preferentially used laser rangefinders [14,2,6], we use stereo vision as the main sensor. Vision sensors allow us to use more distant objects as landmarks for navigation, and to learn and use color and texture models of the environment, in looking further ahead than is possible with range sensors alone.

[1]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[2]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[3]  Anthony Stentz,et al.  Optimal and efficient path planning for partially-known environments , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[4]  Anthony Stentz Optimal and efficient path planning for partially-known environments , 1994 .

[5]  A. Kelly An Intelligent Predictive Controller for Autonomous Vehicles , 1994 .

[6]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[7]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[8]  Wolfram Burgard,et al.  The dynamic window approach to collision avoidance , 1997, IEEE Robotics Autom. Mag..

[9]  Kurt Konolige,et al.  Small Vision Systems: Hardware and Implementation , 1998 .

[10]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[11]  Steven Dubowsky,et al.  Rapid physics-based rough-terrain rover planning with sensor and control uncertainty , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[12]  Kurt Konolige,et al.  A gradient method for realtime robot control , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[13]  Clark F. Olson,et al.  Robust stereo ego-motion for long distance navigation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[14]  Eduardo Mario Nebot,et al.  High accuracy navigation using laser range sensors in outdoor applications , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[15]  Roberto Manduchi,et al.  Terrain perception for DEMO III , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[16]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[17]  Ray Jarvis,et al.  3D Vision for Large-Scale Outdoor Environments , 2002 .

[18]  John J. Leonard,et al.  Consistent, Convergent, and Constant-Time SLAM , 2003, IJCAI.

[19]  Sebastian Thrun,et al.  Large-Scale Robotic 3-D Mapping of Urban Structures , 2004, ISER.

[20]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[21]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[22]  Roland Siegwart,et al.  An Interpolated Dynamic Navigation Function , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[23]  A. Rankin,et al.  Evaluation of stereo vision obstacle detection algorithms for off-road autonomous navigation , 2005 .

[24]  Kurt Konolige,et al.  Real-time Localization in Outdoor Environments using Stereo Vision and Inexpensive GPS , 2006, 18th International Conference on Pattern Recognition (ICPR'06).