Detailed study of high-p(T) neutral pion suppression and azimuthal anisotropy in Au plus Au collisions at root s(NN) =200 GeV

Measurements of neutral pion (pi(0)) production at midrapidity in root s(NN)=200 GeV Au+Au collisions as a function of transverse momentum, p(T), collision centrality, and angle with respect to reaction plane are presented. The data represent the final pi(0) results from the PHENIX experiment for the first RHIC Au+Au run at design center-of-mass energy. They include additional data obtained using the PHENIX Level-2 trigger with more than a factor of 3 increase in statistics over previously published results for p(T)>6 GeV/c. We evaluate the suppression in the yield of high-p(T) pi(0)'s relative to pointlike scaling expectations using the nuclear modification factor R-AA. We present the p(T) dependence of R-AA for nine bins in collision centrality. We separately integrate R-AA over larger p(T) bins to show more precisely the centrality dependence of the high-p(T) suppression. We then evaluate the dependence of the high-p(T) suppression on the emission angle Delta phi of the pions with respect to event reaction plane for seven bins in collision centrality. We show that the yields of high-p(T) pi(0)'s vary strongly with Delta phi, consistent with prior measurements 1,2. We show that this variation persists in the most peripheral bin accessible in this analysis. For the peripheral bins we observe no suppression for neutral pions produced aligned with the reaction plane, whereas the yield of pi(0)'s produced perpendicular to the reaction plane is suppressed by a factor of similar to 2. We analyze the combined centrality and Delta phi dependence of the pi(0) suppression in different p(T) bins using different possible descriptions of parton energy loss dependence on jet path-length averages to determine whether a single geometric picture can explain the observed suppression pattern.

D. Kim | K. Oyama | A. Ster | A. Kiyomichi | S. Sato | N. Grau | J. Jia | O. Jinnouchi | M. Marx | A. Milov | T. Nakamura | P. Nilsson | J. Tojo | S. White | T. Ichihara | J. Kang | H. Kim | S. Lee | T. Matsumoto | C. Woody | S. Stoll | H. Tsuruoka | Y. Kuroki | D. Isenhower | J. Hill | V. Veszpremi | R. Choudhury | D. Dutta | A. Mohanty | B. Hong | K. Sim | S. Afanasiev | N. Tyurin | J. Alexander | G. Martinez | M. Issah | C. Maguire | J. Velkovska | S. Greene | A. Malakhov | D. d’Enterria | D. Kim | R. Amirikas | A. Oskarsson | E. Stenlund | T. Shiina | Y. Yang | Y. Liu | J. Sullivan | M. Reuter | R. Soltz | M. Heffner | J. Mitchell | C. Ogilvie | M. Shaw | J. Peng | D. Kotchetkov | K. Tanida | L. Sanfratello | H. Ohnishi | J. Haggerty | W. Xie | J. Frantz | V. Papavassiliou | R. Hayano | S. Chernichenko | K. Read | E. Hartouni | C. Aidala | F. Fleuret | I. Ravinovich | O. Drapier | V. Samsonov | A. Vinogradov | V. Onuchin | A. Soldatov | M. Kopytine | G. Gogiberidze | J. Moss | J. Nagle | B. Cole | Y. Efremenko | L. Aphecetche | R. Averbeck | A. Baldisseri | Y. Berdnikov | H. Borel | H. Buesching | T. Chujo | S. Fokin | H. Hamagaki | B. Jacak | A. Khanzadeev | C. Klein-boesing | V. Manko | Y. Miake | B. Nandi | A. Nyanin | J. Nystrand | T. Peitzmann | J. Rak | K. Reygers | V. Riabov | S. Sakai | Y. Schutz | K. Shigaki | D. Silvermyr | S. Sorensen | T. Sugitate | P. Rosnet | J. Newby | A. Enokizono | A. Glenn | H. Torii | R. Santo | H. Delagrange | T. Awes | K. Ozawa | H. Gustafsson | F. Staley | I. Yushmanov | I. Otterlund | D. Kim | P. Constantin | H. Tydesjö | S. Esumi | P. Stankus | H. Masui | C. Zhang | W. Zajc | K. Barish | W. Guryn | L. Kochenda | R. Lacey | X. Li | S. Mioduszewski | R. Seto | M. Gonin | J. Boissevain | W. Sondheim | R. Mischke | B. Fox | E. Kim | D. Bucher | J. Gosset | N. Bruner | A. Frawley | O. Dietzsch | E. M. Takagui | S. Aronson | V. Kochetkov | P. Kroon | A. Taketani | Z. Fraenkel | T. Hachiya | V. Pantuev | J. Park | A. Drees | A. Franz | F. Messer | I. Ojha | N. Saito | T. Shea | D. S. Brown | C. Chi | S. Bathe | K. Drees | V. Ladygin | A. Durum | A. Yanovich | K. Kurita | S. Nagamiya | M. Purschke | M. Harvey | M. Sivertz | A. Bazilevsky | Y. Kwon | S. Pate | J. Kikuchi | M. Sakai | Y. Cobigo | H. Sato | D. Koehler | N. Ajitanand | Y. Akiba | V. Babintsev | B. Bassalleck | V. Baublis | M. Brooks | V. Bumazhnov | S. Butsyk | J. Chai | I. Choi | V. Cianciolo | G. David | A. Denisov | E. Desmond | D. Fields | M. Perdekamp | X. He | T. Hemmick | K. Imai | A. Isupov | B. Johnson | K. Joo | D. Jouan | E. Kistenev | J. Lajoie | A. Lebedev | M. Leitch | A. Litvinenko | M. Liu | Y. Makdisi | P. McGaughey | D. Morrison | J. Murata | K. Okada | V. Peresedov | C. Pinkenburg | R. Pisani | Y. Riabov | M. Rosati | S. Sawada | T. Shibata | C. Silva | V. Singh | I. Sourikova | M. Stepanov | M. Tannenbaum | R. Towell | I. Tserruya | E. Vznuzdaev | X. Wang | Y. Watanabe | S. Yokkaichi | L. Zolin | H. En’yo | Y. Goto | K. Homma | E. O'brien | T. Sakaguchi | T. Kohama | P. Barnes | S. Batsouli | S. Belikov | G. Bunce | W. Chang | M. Chiu | W. Holzmann | M. Ishihara | S. Kametani | N. Kamihara | A. Kozlov | G. Kyle | D. Lee | Y. Mao | F. Matathias | D. Mukhopadhyay | A. Palounek | A. Purwar | G. Roche | V. Semenov | T. Thomas | G. Young | J. Heuser | S. Tuli | A. Romañá | S. Adler | J. Burward-Hoy | P. Chand | K. Chenawi | L. Ewell | S. Fung | S. Garpman | T. Ghosh | A. G. Hansen | N. Hayashi | M. Hibino | A. Hoover | W. Jang | S. Johnson | S. Kapoor | K. Katou | S. Kelly | B. Khachaturov | H. Kobayashi | C. H. Kuberg | E. Melnikov | J. Milan | G. Mishra | F. Mühlbacher | M. Muniruzzaman | M. Ono | F. Plasil | S. Ryu | M. Tamai | K. Tanaka | J. Tepe | M. Velkovsky | L. Villatte | M. Volkov | F. Wohn | J. Chiba | T. E. Miller | D. Pal | P. Tarjan | A. Deshpande | R. Azmoun | S. Bhagavatula | S. Borenstein | X. Camard | Y. Jeong | G. Kim | K. Kiyoyama | S. Leckey | H. Lim | M. Nara | A. Parmar | M. Sadler | A. Devismes | V. V. Ikonnikov | R. Durietz | H. Vanhecke | J. Choi | R. D. G. Cassagnac | S. Zhou | M. Kweon | C. P. Singh | Y. Tanaka

[1]  Peter Steinberg,et al.  Glauber Modeling in High Energy Nuclear Collisions , 2007, nucl-ex/0701025.

[2]  J. Jia,et al.  Ways to constrain the away side jet in Au + Au collisions in PHENIX , 2006, nucl-ex/0609009.

[3]  I. Vitev Testing the theory of QGP-induced energy loss at RHIC and the LHC , 2006, hep-ph/0603010.

[4]  G. Paic,et al.  Leading-particle suppression and surface emission in nucleus-nucleus collisions , 2005, hep-ph/0511045.

[5]  V. Pantuev Jet absorption and the corona effect at RHIC: Extracting collision geometry from experimental data , 2005, hep-ph/0506095.

[6]  M. Gyulassy,et al.  3D jet tomography of twisted strongly coupled quark gluon plasmas , 2005, nucl-th/0505004.

[7]  E. al.,et al.  Centrality dependence of direct photon production in root s(NN) = 200 GeV Au+Au collisions. , 2005, nucl-ex/0503003.

[8]  E. al.,et al.  Measurement of single electron event anisotropy in Au+Au collisions at √sNN = 200 GeV , 2005, nucl-ex/0502009.

[9]  E. al.,et al.  Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration , 2004, nucl-ex/0410003.

[10]  K. Eskola,et al.  The Fragility of High-pT Hadron Spectra as a Hard Probe , 2004, hep-ph/0406319.

[11]  G. Paic,et al.  Leading-particle suppression in high energy nucleus-nucleus collisions , 2004, hep-ph/0406201.

[12]  Xin-Nian Wang Discovery of jet quenching and beyond , 2004, nucl-th/0405017.

[13]  M. Gyulassy,et al.  New forms of QCD matter discovered at RHIC , 2004, nucl-th/0405013.

[14]  J. Jia,et al.  Medium-induced jet absorption in relativistic heavy-ion collisions , 2003, nucl-th/0310044.

[15]  I. Zahed,et al.  Rethinking the properties of the quark gluon plasma at T approximately T(c) , 2003, hep-ph/0307267.

[16]  R. Debbe,et al.  Transverse momentum spectra in Au+Au and d+Au collisions at s**(1/2) = 200-GeV and the pseudorapidity dependence of high p(T) suppression. , 2003, nucl-ex/0307003.

[17]  B. Müller Phenomenology of jet quenching in heavy ion collisions , 2003 .

[18]  K. J. Foley,et al.  Evidence from d+Au measurements for final-state suppression of high-p(T) hadrons in Au+Au collisions at RHIC. , 2003, Physical review letters.

[19]  E. al.,et al.  Absence of suppression in particle production at large transverse momentum in sqrt[s(NN)]=200 GeV d+Au collisions. , 2003, Physical review letters.

[20]  K. J. Foley,et al.  Transverse-momentum and collision-energy dependence of high-pT hadron suppression in Au+Au collisions at ultrarelativistic energies. , 2003, Physical review letters.

[21]  E. al.,et al.  Midrapidity Neutral-Pion Production in Proton-Proton Collisions at √s = 200 GeV , 2003, hep-ex/0304038.

[22]  U. Wiedemann,et al.  Gluon Radiation and Parton Energy Loss , 2003, hep-ph/0304151.

[23]  C. L. Britton,et al.  PHENIX inner detectors , 2003 .

[24]  M. Harrison,et al.  The RHIC design overview , 2003 .

[25]  Sin-Jin Lin,et al.  PHENIX detector overview , 2003 .

[26]  M. C. Smith,et al.  PHENIX on-line systems , 2003 .

[27]  M. Gyulassy,et al.  Jet Quenching and Radiative Energy Loss in Dense Nuclear Matter , 2003, nucl-th/0302077.

[28]  K. J. Foley,et al.  Azimuthal anisotropy and correlations in the hard scattering regime at RHIC. , 2003, Physical review letters.

[29]  M. Gyulassy,et al.  High-p(T) Tomography of d+Au and Au+Au at SPS, RHIC, and LHC. , 2002, Physical review letters.

[30]  T. C. Sangster,et al.  Flow measurements via two-particle azimuthal correlations in Au + Au collisions at sqrt [s(NN)]=130 GeV. , 2002, Physical review letters.

[31]  Xin-Nian Wang,et al.  Jet tomography of hot and cold nuclear matter. , 2002, Physical review letters.

[32]  M. Gyulassy,et al.  Jet tomography of Au+Au reactions including multi-gluon fluctuations , 2001, nucl-th/0112071.

[33]  E. Shuryak Azimuthal asymmetry at large p t seem to be too large for a pure ``jet quenching'' , 2001, nucl-th/0112042.

[34]  E. al.,et al.  Suppression of hadrons with large transverse momentum in central Au + Au collisions at √sNN = 130 GeV , 2001, nucl-ex/0109003.

[35]  M. Gyulassy,et al.  High p(T) azimuthal asymmetry in noncentral A + A at RHIC. , 2000, Physical review letters.

[36]  T. C. Sangster,et al.  Centrality dependence of charged particle multiplicity in Au-Au collisions at square root of (s)NN = 130 GeV. , 2000, Physical review letters.

[37]  S. Mrenna,et al.  High-energy physics event generation with PYTHIA 6.1 , 2000, hep-ph/0010017.

[38]  S. White,et al.  The RHIC zero-degree calorimeters , 2000, nucl-ex/0008005.

[39]  F. Gelis,et al.  Landau-Pomeranchuk-Migdal effect in thermal field theory , 2000, hep-ph/0003326.

[40]  R. Baier,et al.  Energy loss in perturbative QCD , 2000, hep-ph/0002198.

[41]  A.M.Poskanzer,et al.  Methods for analyzing anisotropic flow in relativistic nuclear collisions , 1998, nucl-ex/9805001.

[42]  T. Wyatt,et al.  Where to stick your data points : the treatment of measurements within wide bins , 1995 .

[43]  M. Arneodo Nuclear effects in structure functions , 1994 .

[44]  M. Gyulassy,et al.  Gluon shadowing and jet quenching in A + A collisions at s**(1/2) = 200-GeV , 1992 .

[45]  Dietrick E. Thomsen Quark-Gluon Plasma , 1986 .

[46]  M. Jacob,et al.  Large transverse momentum and jet studies , 1978 .