Micromagnetic modeling of terahertz oscillations in an antiferromagnetic material driven by the spin Hall effect

The realization of THz sources is a fundamental aspect for a wide range of applications. Over different approaches, compact THz oscillators can be realized taking advantage of dynamics in antiferromagnetic (AFMs) thin films driven by spin-Hall effect. Here we perform a systematic study of these THz oscillators within a full micromagnetic solver based on the numerical solution of two coupled Landau-Lifshitz-Gilbert-Slonczewski equations, for the case of ultra-thin films, i.e. when the N\'eel temperature of an AFM is substantially reduced. We have found two different dynamical modes depending on the strength of the Dzyaloshinskii-Moriya interaction (DMI). At low DMI, a large amplitude precession is excited where both the magnetizations of the sublattices are in a uniform state and rotate in the same direction. At large enough DMI, the ground state of the AFM becomes non-uniform and the antiferromagnetic dynamics is characterized by ultrafast domain wall motion.

[1]  Derek Abbott,et al.  T-Ray Sensing and Imaging , 2003, Proceedings of the IEEE.

[2]  H. Haubeck COMP , 2019, Springer Reference Medizin.

[3]  R. Duine,et al.  Theory of spin torques and giant magnetoresistance in antiferromagnetic metals , 2006 .

[4]  A. Manchon,et al.  Antiferromagnetic spintronics , 2016, 1606.04284.

[5]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[6]  Ruonan Han,et al.  Progress and Challenges Towards Terahertz CMOS Integrated Circuits , 2010, IEEE Journal of Solid-State Circuits.

[7]  A. Brataas,et al.  Antiferromagnetic spin textures and dynamics , 2018 .

[8]  J. Wunderlich,et al.  Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields , 2016, 1604.05918.

[9]  G. Finocchio,et al.  Nanoscale spintronic oscillators based on the excitation of confined soliton modes , 2013 .

[10]  M. Fiebig,et al.  Terahertz-Driven Nonlinear Spin Response of Antiferromagnetic Nickel Oxide. , 2016, Physical review letters.

[11]  Willie J Padilla,et al.  Terahertz Magnetic Response from Artificial Materials , 2004, Science.

[12]  Giovanni Finocchio,et al.  Spin transfer nano-oscillators. , 2013, Nanoscale.

[13]  B. Azzerboni,et al.  Magnetic Radial Vortex Stabilization and Efficient Manipulation Driven by the Dzyaloshinskii-Moriya Interaction and Spin-Transfer Torque. , 2016, Physical review letters.

[14]  M. Jourdan,et al.  Manipulation of antiferromagnetic domain distribution in Mn2Au by ultrahigh magnetic fields and by strain , 2017 .

[15]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[16]  B. Ivanov,et al.  Antiferromagnetic THz-frequency Josephson-like Oscillator Driven by Spin Current , 2016, Scientific Reports.

[17]  Wei Zhang,et al.  Perspectives of antiferromagnetic spintronics , 2018 .

[18]  Antonino Laudani,et al.  Scalable synchronization of spin-Hall oscillators in out-of-plane field , 2016, 1611.01227.

[19]  F. Ciccacci,et al.  Magnetic properties of antiferromagnetic oxide materials : surfaces, interfaces, and thin films , 2010 .

[20]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[21]  M. Beard,et al.  Progress towards two-dimensional biomedical imaging with THz spectroscopy. , 2002, Physics in medicine and biology.

[22]  Takuo Ohkochi,et al.  Spin torque control of antiferromagnetic moments in NiO , 2017, Scientific Reports.

[23]  Andrew G. Glen,et al.  APPL , 2001 .

[24]  N. Ntallis,et al.  Micromagnetic simulation of an antiferromagnetic particle , 2015 .

[25]  P. Levy,et al.  Role of Anisotropic Exchange Interactions in Determining the Properties of Spin-Glasses , 1980 .

[26]  B. Azzerboni,et al.  Micromagnetic understanding of stochastic resonance driven by spin-transfer-torque , 2011 .

[27]  C. Kulesa Terahertz Spectroscopy for Astronomy: From Comets to Cosmology , 2011, IEEE Transactions on Terahertz Science and Technology.

[28]  B. Fischer,et al.  Chemical recognition in terahertz time-domain spectroscopy and imaging , 2005 .

[29]  T. Jungwirth,et al.  Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility , 2017, Nature Communications.

[30]  P. Siegel Terahertz Technology , 2001 .

[31]  D. Apalkov,et al.  Dzyaloshinskii-Moriya anisotropy in nanomagnets with in-plane magnetization , 2015, 1508.02961.

[32]  Werner Scholz,et al.  Micromagnetic simulation of antiferromagnetic/ferromagnetic structures , 2002 .

[33]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[34]  B. Diény,et al.  Influence of edges on the exchange bias properties of ferromagnetic/antiferromagnetic nanodots , 2010 .

[35]  Bruno Azzerboni,et al.  Hysteretic Synchronization in Spin-Torque Nanocontact Oscillators: A Micromagnetic Study , 2014, IEEE Transactions on Nanotechnology.

[36]  B. Williams Terahertz quantum cascade lasers , 2007, 2008 Asia Optical Fiber Communication & Optoelectronic Exposition & Conference.

[37]  I. Turek,et al.  Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance , 2017, Nature Communications.

[38]  G. Finocchio,et al.  Nanomagnetic logic with non-uniform states of clocking , 2016, 1602.02528.

[39]  P. Alam ‘W’ , 2021, Composites Engineering.

[40]  Xicheng Zhang,et al.  Materials for terahertz science and technology , 2002, Nature materials.

[41]  Di Xiao,et al.  Terahertz Antiferromagnetic Spin Hall Nano-Oscillator. , 2015, Physical review letters.

[42]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[43]  W. Rippard,et al.  Direct-current induced dynamics in Co90 Fe10/Ni80 Fe20 point contacts. , 2003, Physical review letters.

[44]  G. Bertotti,et al.  Stochastic resonance in noise-induced transitions between self-oscillations and equilibria in spin-valve nanomagnets , 2011 .

[45]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[46]  J. Sinova,et al.  Spin Hall effects , 2015 .

[47]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[48]  Magn. , 2020, Catalysis from A to Z.

[49]  B. Ivanov,et al.  Terahertz-Frequency Spin Hall Auto-oscillator Based on a Canted Antiferromagnet , 2017, 1707.07491.

[50]  G. Finocchio,et al.  Performance of synthetic antiferromagnetic racetrack memory: domain wall versus skyrmion , 2016, 1610.00894.

[51]  Room temperature write-read operations in antiferromagnetic memory , 2015, 1507.06138.

[52]  Mario Carpentieri,et al.  Ultrahigh detection sensitivity exceeding 105 V/W in spin-torque diode , 2018, Applied Physics Letters.

[53]  B. Azzerboni,et al.  Micromagnetic Modeling of Nanocontact Spin-Torque Oscillators With Perpendicular Anisotropy at Zero Bias Field , 2008, IEEE Transactions on Magnetics.

[54]  Christopher D. Stoik,et al.  Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. , 2008, Optics express.

[55]  Ilgaitis Prūsis,et al.  Nature of Photon , 2019 .

[56]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[57]  J. Sinova,et al.  Spin caloric effects in antiferromagnets assisted by an external spin current , 2018, Journal of Physics D: Applied Physics.

[58]  V. Loktev,et al.  Spintronics of antiferromagnetic systems (Review Article) , 2014 .

[59]  R. Buhrman,et al.  Micromagnetic modeling of magnetization switching driven by spin-polarized current in magnetic tunnel junctions , 2007 .