A Genetic Algorithm for Optimizing Background Subtraction Parameters in Computer Vision

Tracking moving objects in a video sequence is a critical task in several computer vision applications. A common approach is to perform background subtraction which identifies moving objects in a video frame. The mixture of Gaussians model is one of the most popular techniques for performing background subtraction. The performance of the mixture of Gaussian model strongly depends on parameters such as learning rate, background ratio, and number of Gaussians. Fi ne tuning these parameters is a huge challenge for efficient performance of the background subtraction algorithm. In this work, we propose a genetic algorithm to determine the optimal values of the learning rate and background ratio. Experiments based on t he Wallflower test images demonstrate the superior performance of the genetic algorithm when compared to a recently proposed particle swarm optimization approach.

[1]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[2]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[3]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[4]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[5]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Jitendra Malik,et al.  Towards robust automatic traffic scene analysis in real-time , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[7]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[8]  Marc Van Droogenbroeck,et al.  ViBe: A Universal Background Subtraction Algorithm for Video Sequences , 2011, IEEE Transactions on Image Processing.

[9]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[10]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Minglun Gong,et al.  Realtime background subtraction from dynamic scenes , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[12]  Mubarak Shah,et al.  Automatically Tuning Background Subtraction Parameters using Particle Swarm Optimization , 2007, 2007 IEEE International Conference on Multimedia and Expo.