Causal dynamical triangulations and the quest for quantum gravity

Quantum Gravity by Causal Dynamical Triangulation has over the last few years emerged as a serious contender for a nonperturbative description of the theory. It is a nonperturbative implementation of the sum-over-histories, which relies on few ingredients and initial assumptions, has few free parameters and - crucially - is amenable to numerical simulations. It is the only approach to have demonstrated that a classical universe can be generated dynamically from Planckian quantum fluctuations. At the same time, it allows for the explicit evaluation of expectation values of invariants characterizing the highly nonclassical, short-distance behaviour of spacetime. As an added bonus, we have learned important lessons on which aspects of spacetime need to be fixed a priori as part of the background structure and which can be expected to emerge dynamically.

[1]  Copenhagen,et al.  Emergence of a 4D world from causal quantum gravity. , 2004, Physical review letters.

[2]  S. Zohren,et al.  A string field theory based on causal dynamical triangulations , 2008, 0802.0719.

[3]  J. Jurkiewicz,et al.  Lorentzian and Euclidean Quantum Gravity - Analytical and Numerical Results , 2000 .

[4]  J. Jurkiewicz,et al.  Reconstructing the universe , 2005, hep-th/0505154.

[5]  Petr Hořava Spectral dimension of the universe in quantum gravity at a lifshitz point. , 2009, Physical review letters.

[6]  Halliwell,et al.  Steepest-descent contours in the path-integral approach to quantum cosmology. III. A general method with applications to anisotropic minisuperspace models. , 1990, Physical review. D, Particles and fields.

[7]  J. Jurkiewicz,et al.  The spectral dimension of the universe is scale dependent. , 2005, Physical review letters.

[8]  G. Ellis Issues in the Philosophy of Cosmology , 2006, astro-ph/0602280.

[9]  Loop Quantum Gravity: An Inside View , 2006, hep-th/0608210.

[10]  A. Görlich,et al.  Planckian birth of a quantum de sitter universe. , 2007, Physical review letters.

[11]  S. Giddings Nonlocality versus complementarity: a conservative approach to the information problem , 2009, 0911.3395.

[12]  J. Henson,et al.  Approaches to Quantum Gravity: The causal set approach to Quantum Gravity , 2006, gr-qc/0601121.

[13]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[14]  M. Reuter,et al.  Ultraviolet fixed point and generalized flow equation of quantum gravity , 2001 .

[15]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[16]  S. Zohren,et al.  Proper time is stochastic time in 2d quantum gravity , 2009, 0911.4211.

[17]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[18]  R. Loll,et al.  The emergence of spacetime or quantum gravity on your desktop , 2007, 0711.0273.

[19]  J. Ambjorn,et al.  Non-perturbative 3d Lorentzian quantum gravity , 2000, hep-th/0011276.

[20]  Carlo Rovelli,et al.  Discreteness of area and volume in quantum gravity [Nucl. Phys. B 442 (1995) 593] , 1994, gr-qc/9411005.

[21]  M. Reuter,et al.  Fractal spacetime structure in asymptotically safe gravity , 2005 .

[22]  R. Loll,et al.  Non-perturbative Lorentzian Quantum Gravity, Causality and Topology Change , 1998 .

[23]  M. Niedermaier,et al.  The Asymptotic Safety Scenario in Quantum Gravity , 2006, Living reviews in relativity.

[24]  Ambjorn,et al.  Nonperturbative lorentzian path integral for gravity , 2000, Physical review letters.

[25]  S. Zohren,et al.  Taming the cosmological constant in 2D causal quantum gravity with topology change , 2005, hep-th/0507012.

[26]  Volume operator in discretized quantum gravity. , 1995, Physical review letters.

[27]  J. Ambjorn,et al.  Properties of Loop Equations for the Hermitian Matrix Model and for Two-Dimensional Quantum Gravity , 1990 .

[28]  TOPICAL REVIEW: The asymptotic safety scenario in quantum gravity: an introduction , 2006, gr-qc/0610018.

[29]  Gerard 't Hooft,et al.  Emergent quantum mechanics and emergent symmetries , 2007, 0707.4568.

[30]  J. Jurkiewicz,et al.  Nonperturbative quantum de Sitter universe , 2008, 0807.4481.

[31]  J. Ambjorn,et al.  Summing over all topologies in CDT string field theory , 2009, 0905.2108.

[32]  Joe Henson,et al.  Spectral geometry as a probe of quantum spacetime , 2009, 0911.0401.

[33]  Bas V. de Bakker Further evidence that the transition of 4D dynamical triangulation is 1st order , 1996 .

[34]  Z. Burda,et al.  Focusing on the fixed point of 4D simplicial gravity , 1996 .

[35]  J. Jurkiewicz,et al.  Quantum gravity as sum over spacetimes , 2009, 0906.3947.

[36]  T. Regge General relativity without coordinates , 1961 .

[37]  Z. Burda,et al.  Appearance of mother universe and singular vertices in random geometries , 1997 .

[38]  J. Ambjorn,et al.  Shaken, but not stirred—Potts model coupled to quantum gravity , 2008, 0806.3506.

[39]  R. Loll,et al.  A new perspective on matter coupling in two-dimensional gravity. , 1999, hep-th/9904012.