PACAP38/mast-cell-specific receptor axis mediates repetitive stress-induced headache in mice

[1]  R. K. Panjaliya,et al.  Role of TNF-α in the Pathogenesis of Migraine , 2024, Pain research & management.

[2]  Hyeonwi Son,et al.  Mast-cell-specific receptor mediates alcohol-withdrawal-associated headache in male mice , 2023, Neuron.

[3]  N. Limjunyawong,et al.  PACAP activates MRGPRX2 on meningeal mast cells to drive migraine-like pain , 2023, Scientific reports.

[4]  Sanjay Cheema,et al.  Cytokines in primary headache disorders: a systematic review and meta-analysis , 2023, The Journal of Headache and Pain.

[5]  G. Dussor,et al.  MNK1/2 contributes to periorbital hypersensitivity and hyperalgesic priming in preclinical migraine models. , 2022, Brain : a journal of neurology.

[6]  S. Sacco,et al.  European Headache Federation guideline on the use of monoclonal antibodies targeting the calcitonin gene related peptide pathway for migraine prevention – 2022 update , 2022, The Journal of Headache and Pain.

[7]  D. Dodick,et al.  Dysregulation of serum prolactin links the hypothalamus with female nociceptors to promote migraine. , 2022, Brain : a journal of neurology.

[8]  D. Kristensen,et al.  The PACAP pathway is independent of CGRP in mouse models of migraine: possible new drug target? , 2022, Brain : a journal of neurology.

[9]  A. Gyenesei,et al.  PACAP-38 Induces Transcriptomic Changes in Rat Trigeminal Ganglion Cells Related to Neuroinflammation and Altered Mitochondrial Function Presumably via PAC1/VPAC2 Receptor-Independent Mechanism , 2022, International journal of molecular sciences.

[10]  M. Ferrari,et al.  Migraine , 2022, Nature Reviews Disease Primers.

[11]  A. Akopian,et al.  Prolactin signaling modulates stress‐induced behavioral responses in a preclinical mouse model of migraine , 2021, Headache.

[12]  S. Suzuki,et al.  Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine , 2021, International journal of molecular sciences.

[13]  Hui Gu,et al.  Tumor Necrosis Factor Alpha Signaling and Organogenesis , 2021, Frontiers in Cell and Developmental Biology.

[14]  A. M. van den Maagdenberg,et al.  Migraine and neuroinflammation: the inflammasome perspective , 2021, The Journal of Headache and Pain.

[15]  L. Basso,et al.  Mas-related G protein-coupled receptors (Mrgprs) – Key regulators of neuroimmune interactions , 2021, Neuroscience Letters.

[16]  T. Rauter,et al.  Pharmaco-Optogenetic Targeting of TRPC Activity Allows for Precise Control Over Mast Cell NFAT Signaling , 2020, Frontiers in Immunology.

[17]  M. Ashina,et al.  A phase 2, randomized, double-blind, placebo-controlled trial of AMG 301, a pituitary adenylate cyclase-activating polypeptide PAC1 receptor monoclonal antibody for migraine prevention , 2020, Cephalalgia : an international journal of headache.

[18]  A. Akopian,et al.  Repetitive stress in mice causes migraine-like behaviors and CGRP-dependent hyperalgesic priming to a migraine trigger. , 2020, Pain.

[19]  L. Edvinsson,et al.  Differences in pituitary adenylate cyclase-activating peptide and calcitonin gene-related peptide release in the trigeminovascular system , 2020, Cephalalgia : an international journal of headache.

[20]  J. Webster,et al.  The Balance of TNF Mediated Pathways Regulates Inflammatory Cell Death Signaling in Healthy and Diseased Tissues , 2020, Frontiers in Cell and Developmental Biology.

[21]  M. Freichel,et al.  Analysis of Mrgprb2 Receptor-Evoked Ca2+ Signaling in Bone Marrow Derived (BMMC) and Peritoneal (PMC) Mast Cells of TRPC-Deficient Mice , 2020, Frontiers in Immunology.

[22]  Hantao Liu,et al.  PAC1 receptor blockade reduces central nociceptive activity: new approach for primary headache? , 2020, Pain.

[23]  A. May,et al.  Hypothalamic regulation of headache and migraine , 2019, Cephalalgia : an international journal of headache.

[24]  M. Moskowitz,et al.  Migraine and the trigeminovascular system—40 years and counting , 2019, The Lancet Neurology.

[25]  M. Burton,et al.  Dural Calcitonin Gene-Related Peptide Produces Female-Specific Responses in Rodent Migraine Models , 2019, The Journal of Neuroscience.

[26]  J. Olesen,et al.  PACAP-38 and PACAP(6–38) Degranulate Rat Meningeal Mast Cells via the Orphan MrgB3-Receptor , 2019, Front. Cell. Neurosci..

[27]  R. Thangavel,et al.  Mast Cells in Stress, Pain, Blood-Brain Barrier, Neuroinflammation and Alzheimer’s Disease , 2019, Front. Cell. Neurosci..

[28]  T. Sundrum,et al.  Pituitary adenylate cyclase‐activating polypeptide receptors in the trigeminovascular system: implications for migraine , 2018, British journal of pharmacology.

[29]  M. Freichel,et al.  Isolation of Peritoneum-derived Mast Cells and Their Functional Characterization with Ca2+-imaging and Degranulation Assays. , 2018, Journal of visualized experiments : JoVE.

[30]  A. Maassenvandenbrink,et al.  Current understanding of meningeal and cerebral vascular function underlying migraine headache , 2018, Cephalalgia : an international journal of headache.

[31]  G. Dussor,et al.  Non-invasive dural stimulation in mice: A novel preclinical model of migraine , 2018, Cephalalgia : an international journal of headache.

[32]  P. Conti,et al.  New concepts in neuroinflammation: mast cells pro-inflammatory and anti-inflammatory cytokine mediators. , 2018, Journal of biological regulators and homeostatic agents.

[33]  J. Tajti,et al.  PACAP and its role in primary headaches , 2018, The Journal of Headache and Pain.

[34]  K. C. Brennan,et al.  A Systems Neuroscience Approach to Migraine , 2018, Neuron.

[35]  K. Gupta,et al.  Mast cell‐neural interactions contribute to pain and itch , 2018, Immunological reviews.

[36]  G. Dussor,et al.  Neurovascular contributions to migraine: Moving beyond vasodilation , 2016, Neuroscience.

[37]  R. Demontis,et al.  TRPV1 receptor in the human trigeminal ganglion and spinal nucleus: immunohistochemical localization and comparison with the neuropeptides CGRP and SP , 2016, Journal of anatomy.

[38]  K. Ressler,et al.  Stress-related disorders, pituitary adenylate cyclase—activating peptide (PACAP)ergic system, and sex differences , 2016, Dialogues in clinical neuroscience.

[39]  Shaoqiu He,et al.  Coupled Activation of Primary Sensory Neurons Contributes to Chronic Pain , 2016, Neuron.

[40]  A. Kulkarni,et al.  Targeted overexpression of tumor necrosis factor-&agr; increases cyclin-dependent kinase 5 activity and TRPV1-dependent Ca2+ influx in trigeminal neurons , 2016, Pain.

[41]  Xinzhong Dong,et al.  Identification of a mast cell specific receptor crucial for pseudo-allergic drug reactions , 2014, Nature.

[42]  J. Olesen,et al.  Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. , 2014, Brain : a journal of neurology.

[43]  R. Dubner,et al.  Central Terminal Sensitization of TRPV1 by Descending Serotonergic Facilitation Modulates Chronic Pain , 2014, Neuron.

[44]  R. Silver,et al.  Mast cells on the mind: new insights and opportunities , 2013, Trends in Neurosciences.

[45]  J. Olesen,et al.  Dural mast cell degranulation is a putative mechanism for headache induced by PACAP-38 , 2012, Cephalalgia : an international journal of headache.

[46]  J. Harrow,et al.  A conditional knockout resource for the genome-wide study of mouse gene function , 2011, Nature.

[47]  H. Kuehn,et al.  Measuring Mast Cell Mediator Release , 2010, Current protocols in immunology.

[48]  B. Rosen,et al.  Dual RMCE for efficient re-engineering of mouse mutant alleles , 2010, Nature Methods.

[49]  K. Craig,et al.  Coding of facial expressions of pain in the laboratory mouse , 2010, Nature Methods.

[50]  P. Cortelli,et al.  The Primary Headaches as a Reflection of Genetic Darwinian Adaptive Behavioral Responses , 2010, Headache.

[51]  W. Becker,et al.  The Stress and Migraine Interaction , 2009, Headache.

[52]  B. McEwen Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. , 2008, European journal of pharmacology.

[53]  C. Avendaño,et al.  Primary Sensory Neuron Addition in the Adult Rat Trigeminal Ganglion: Evidence for Neural Crest Glio-Neuronal Precursor Maturation , 2007, The Journal of Neuroscience.

[54]  B. McEwen Physiology and neurobiology of stress and adaptation: central role of the brain. , 2007, Physiological reviews.

[55]  R. Burstein,et al.  Mast cell degranulation activates a pain pathway underlying migraine headache , 2007, PAIN.

[56]  J. Olesen,et al.  The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers , 2007, Regulatory Peptides.

[57]  L. Kelman The Triggers or Precipitants of the Acute Migraine Attack , 2007, Cephalalgia : an international journal of headache.

[58]  M. Furuno,et al.  Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. , 2006, Biochemical and biophysical research communications.

[59]  Y. Bae,et al.  Expression of vanilloid receptor TRPV1 in the rat trigeminal sensory nuclei , 2004, The Journal of comparative neurology.

[60]  K. Yau,et al.  Interoception: the sense of the physiological condition of the body , 2003, Current Opinion in Neurobiology.

[61]  A. Craig A new view of pain as a homeostatic emotion , 2003, Trends in Neurosciences.

[62]  D. Yarnitsky,et al.  An association between migraine and cutaneous allodynia , 2000, Annals of neurology.

[63]  R. Burstein,et al.  Sensitization of meningeal sensory neurons and the origin of headaches , 1996, Nature.

[64]  W. ElShamy,et al.  Requirement of neurotrophin-3 for the survival of proliferating trigeminal ganglion progenitor cells. , 1996, Development.

[65]  G. Chrousos,et al.  Stress-induced intracranial mast cell degranulation: a corticotropin-releasing hormone-mediated effect. , 1995, Endocrinology.

[66]  T. Yaksh,et al.  Quantitative assessment of tactile allodynia in the rat paw , 1994, Journal of Neuroscience Methods.

[67]  G. Buscaino,et al.  Exaggerated spontaneous release of tumor necrosis factor-alpha/cachectin in patients with migraine without aura. , 1990, Acta neurologica.

[68]  J. Launay,et al.  Whole Blood and Plasma Histamine in Common Migraine , 1987, Cephalalgia : an international journal of headache.

[69]  J. Denburg,et al.  Increased plasma histamine levels in migraine patients , 1982, Clinical allergy.

[70]  OUP accepted manuscript , 2022, Brain.

[71]  OUP accepted manuscript , 2022, Brain.

[72]  A. Tamas,et al.  Pituitary Adenylate Cyclase Activating Polypeptide — PACAP , 2016, Current Topics in Neurotoxicity.

[73]  J. Olesen,et al.  PACAP38 induces migraine-like attacks in patients with migraine without aura. , 2009, Brain : a journal of neurology.

[74]  M. Beaven,et al.  Regulation of Ca2+ signaling with particular focus on mast cells. , 2009, Critical reviews in immunology.

[75]  M. Moskowitz,et al.  Neurovascular and molecular mechanisms in migraine headaches. , 1993, Cerebrovascular and brain metabolism reviews.