Autonomous rhythmic activity in glioma networks drives brain tumour growth

[1]  T. Kuner,et al.  Glioblastoma hijacks neuronal mechanisms for brain invasion , 2022, Cell.

[2]  T. Wurdinger,et al.  P120-catenin dependent collective brain infiltration by glioma cell networks , 2019, Nature Cell Biology.

[3]  G. Dupont,et al.  Coding and decoding of oscillatory Ca2+ signals. , 2019, Seminars in cell & developmental biology.

[4]  T. Kuner,et al.  Glutamatergic synaptic input to glioma cells drives brain tumour progression , 2019, Nature.

[5]  Shawn M. Gillespie,et al.  Electrical and synaptic integration of glioma into neural circuits , 2019, Nature.

[6]  Mariella G. Filbin,et al.  An Integrative Model of Cellular States, Plasticity, and Genetics for Glioblastoma , 2019, Cell.

[7]  H. Wulff,et al.  Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer's disease , 2019, Annals of clinical and translational neurology.

[8]  W. Wick,et al.  Harmful networks in the brain and beyond , 2018, Science.

[9]  M. Karin,et al.  NF-κB, inflammation, immunity and cancer: coming of age , 2018, Nature Reviews Immunology.

[10]  W. Wick,et al.  Tumor microtubes convey resistance to surgical lesions and chemotherapy in gliomas , 2017, Neuro-oncology.

[11]  T. Möller,et al.  Inhibition of the potassium channel KCa3.1 by senicapoc reverses tactile allodynia in rats with peripheral nerve injury , 2017, European journal of pharmacology.

[12]  Haoyuan Wang,et al.  A three ion channel genes-based signature predicts prognosis of primary glioblastoma patients and reveals a chemotherapy sensitive subtype , 2016, Oncotarget.

[13]  C. Limatola,et al.  KCa3.1 channel inhibition sensitizes malignant gliomas to temozolomide treatment , 2016, Oncotarget.

[14]  O. Garaschuk,et al.  Brain tumour cells interconnect to a functional and resistant network , 2015, Nature.

[15]  G. Reifenberger,et al.  Glioma , 2015, Nature Reviews Disease Primers.

[16]  S. Robert,et al.  A proinvasive role for the Ca2+‐activated K+ channel KCa3.1 in malignant glioma , 2014, Glia.

[17]  Erik Smedler,et al.  Frequency decoding of calcium oscillations. , 2014, Biochimica et biophysica acta.

[18]  C. Limatola,et al.  KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo , 2013, Cell Death and Disease.

[19]  B. Attali,et al.  SK4 Ca2+ activated K+ channel is a critical player in cardiac pacemaker derived from human embryonic stem cells , 2013, Proceedings of the National Academy of Sciences.

[20]  K. Kinzler,et al.  Cancer Genome Landscapes , 2013, Science.

[21]  R. Puca,et al.  The Inhibition of KCa3.1 Channels Activity Reduces Cell Motility in Glioblastoma Derived Cancer Stem Cells , 2012, PloS one.

[22]  K. Ataga,et al.  Improvements in haemolysis and indicators of erythrocyte survival do not correlate with acute vaso‐occlusive crises in patients with sickle cell disease: a phase III randomized, placebo‐controlled, double‐blind study of the gardos channel blocker senicapoc (ICA‐17043) , 2011, British journal of haematology.

[23]  A. Parekh,et al.  Decoding cytosolic Ca2+ oscillations. , 2011, Trends in biochemical sciences.

[24]  Geneviève Dupont,et al.  Calcium oscillations. , 2008, Advances in experimental medicine and biology.

[25]  M. Feller,et al.  Mechanisms underlying spontaneous patterned activity in developing neural circuits , 2010, Nature Reviews Neuroscience.

[26]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[27]  P. Cullen,et al.  The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[29]  P. Tompa,et al.  Frequency decoding of fast calcium oscillations by calpain. , 2001, Cell calcium.

[30]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[31]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[32]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[33]  Keli Xu,et al.  Calcium oscillations increase the efficiency and specificity of gene expression , 1998, Nature.