Quantum coherence enables hybrid multitask and multisource regimes in autonomous thermal machines

Non-equilibrium effects may have a profound impact on the performance of thermal devices performing thermodynamic tasks such as refrigeration or heat pumping. The possibility of enhancing the performance of thermodynamic operations by means of quantum coherence is of particular interest but requires an adequate characterization of heat and work at the quantum level. In this work, we demonstrate that the presence of even small amounts of coherence in the thermal reservoirs powering a three-terminal machine, enables the appearance of combined and hybrid modes of operation, where either different resources are combined to perform a single thermodynamic task, or more than one task is performed at the same time. We determine the performance of such coherence-enabled modes of operation obtaining their power and efficiency and discussing the beneficial or detrimental roles of coherence.

[1]  Z. Man,et al.  Quantum thermodynamics in nonequilibrium reservoirs: Landauer-like bound and its implications , 2023, Physical Review A.

[2]  Gonzalo Manzano,et al.  Quantum-enhanced performance in superconducting Andreev reflection engines , 2023, Physical Review Research.

[3]  J. Pekola,et al.  Fluctuations and stability of a fast-driven Otto cycle , 2023, Physical Review B.

[4]  G. Benenti,et al.  Hybrid quantum thermal machines with dynamical couplings , 2023, iScience.

[5]  I. D’Amico,et al.  Correlation-boosted quantum engine: A proof-of-principle demonstration , 2022, Physical Review Research.

[6]  P. Xue,et al.  Experimental demonstration of a quantum engine driven by entanglement and local measurements , 2022, Physical Review Research.

[7]  Kun-woo Kim,et al.  Optimal superconducting hybrid machine , 2022, Physical Review Research.

[8]  S. Cusumano Quantum Collision Models: A Beginner Guide , 2022, Entropy.

[9]  Jian‐Hua Jiang,et al.  Multitask quantum thermal machines and cooperative effects , 2022, Physical Review B.

[10]  L. Arrachea Energy dynamics, heat production and heat–work conversion with qubits: toward the development of quantum machines , 2022, Reports on progress in physics. Physical Society.

[11]  V. Mukherjee,et al.  Floquet quantum thermal transistor. , 2022, Physical review. E.

[12]  Y. Hassouni,et al.  Exploiting coherence for quantum thermodynamic advantage , 2022, New Journal of Physics.

[13]  O. Abah,et al.  Quantum thermodynamic devices: From theoretical proposals to experimental reality , 2022, AVS Quantum Science.

[14]  A. Auffèves Quantum Technologies Need a Quantum Energy Initiative , 2021, PRX Quantum.

[15]  Sebastian Deffner,et al.  Boosting engine performance with Bose–Einstein condensation , 2021, New Journal of Physics.

[16]  R. S'anchez,et al.  The qutrit as a heat diode and circulator , 2021, New Journal of Physics.

[17]  P. Walther,et al.  Enhanced Photonic Maxwell's Demon with Correlated Baths , 2021, Quantum.

[18]  R. Fazio,et al.  Collective effects on the performance and stability of quantum heat engines. , 2021, Physical review. E.

[19]  V. Giovannetti,et al.  Quantum collision models: Open system dynamics from repeated interactions , 2021, Physics Reports.

[20]  E. Lutz,et al.  A quantum heat engine driven by atomic collisions , 2021, Nature Communications.

[21]  K. Murch,et al.  Two-Qubit Engine Fueled by Entanglement and Local Measurements. , 2021, Physical review letters.

[22]  D. Segal,et al.  Universal Bounds on Fluctuations in Continuous Thermal Machines. , 2021, Physical review letters.

[23]  Patrick P. Potts,et al.  Violating the thermodynamic uncertainty relation in the three-level maser. , 2021, Physical review. E.

[24]  S. Campbell,et al.  Collision models in open system dynamics: A versatile tool for deeper insights? , 2021, EPL (Europhysics Letters).

[25]  R. Fazio,et al.  Optimizing autonomous thermal machines powered by energetic coherence , 2021, New Journal of Physics.

[26]  J. Parrondo,et al.  Non-Abelian Quantum Transport and Thermosqueezing Effects , 2020, PRX Quantum.

[27]  J. Goold,et al.  Thermodynamics of precision in quantum nanomachines. , 2020, Physical review. E.

[28]  M. Paternostro,et al.  Irreversible entropy production: From classical to quantum , 2020, Reviews of Modern Physics.

[29]  Patrick P. Potts,et al.  Hybrid thermal machines: Generalized thermodynamic resources for multitasking , 2020, 2009.03830.

[30]  G. De Chiara,et al.  Quantum machines powered by correlated baths , 2020, Physical Review Research.

[31]  K. Funo,et al.  Superconducting-like Heat Current: Effective Cancellation of Current-Dissipation Trade-Off by Quantum Coherence. , 2020, Physical review letters.

[32]  Alessandro Ferraro,et al.  Three-qubit refrigerator with two-body interactions. , 2019, Physical review. E.

[33]  R. Fazio,et al.  Boosting the performance of small autonomous refrigerators via common environmental effects , 2019, New Journal of Physics.

[34]  Marcus Huber,et al.  Concepts of work in autonomous quantum heat engines , 2019, Quantum.

[35]  M. Paternostro,et al.  Thermodynamics of Weakly Coherent Collisional Models. , 2019, Physical review letters.

[36]  Junjie Liu,et al.  Thermodynamic uncertainty relation in quantum thermoelectric junctions. , 2019, Physical review. E.

[37]  Ozgur Esat Mustecapliouglu,et al.  Spectral signatures of non-thermal baths in quantum thermalization , 2019, Quantum Science and Technology.

[38]  A. Roncaglia,et al.  Reconciliation of quantum local master equations with thermodynamics , 2018, New Journal of Physics.

[39]  J. Goold,et al.  Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel. , 2018, Physical review letters.

[40]  Gonzalo Manzano,et al.  Squeezed thermal reservoir as a generalized equilibrium reservoir , 2018, Physical Review E.

[41]  Krzysztof Ptaszyński Coherence-enhanced constancy of a quantum thermoelectric generator , 2018, Physical Review B.

[42]  D. Segal,et al.  Coherence and decoherence in quantum absorption refrigerators. , 2018, Physical review. E.

[43]  I. S. Oliveira,et al.  Experimental Characterization of a Spin Quantum Heat Engine. , 2018, Physical review letters.

[44]  David Gelbwaser-Klimovsky,et al.  Quantum Features and Signatures of Quantum Thermal Machines , 2018, 1803.05586.

[45]  Jordan M. Horowitz,et al.  Quantum Fluctuation Theorems for Arbitrary Environments: Adiabatic and Nonadiabatic Entropy Production , 2017, Physical Review X.

[46]  J. Parrondo,et al.  Autonomous thermal machine for amplification and control of energetic coherence. , 2017, Physical review. E.

[47]  D. Segal,et al.  Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs , 2017, 1706.06206.

[48]  J. Pekola,et al.  Thermal Conductance of a Single-Electron Transistor. , 2017, Physical review letters.

[49]  Jan Klaers,et al.  Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit , 2017, 1703.10024.

[50]  Gershon Kurizki,et al.  Quantum engine efficiency bound beyond the second law of thermodynamics , 2017, Nature Communications.

[51]  V. Scarani,et al.  Quantum absorption refrigerator with trapped ions , 2017, Nature Communications.

[52]  Maciej Lewenstein,et al.  Generalized laws of thermodynamics in the presence of correlations , 2016, Nature Communications.

[53]  Gernot Schaller,et al.  Quantum and Information Thermodynamics: A Unifying Framework based on Repeated Interactions , 2016, 1610.01829.

[54]  M. Plenio,et al.  Colloquium: quantum coherence as a resource , 2016, 1609.02439.

[55]  Giuliano Benenti,et al.  Fundamental aspects of steady-state conversion of heat to work at the nanoscale , 2016, 1608.05595.

[56]  Paul Skrzypczyk,et al.  Performance of autonomous quantum thermal machines: Hilbert space dimension as a thermodynamical resource. , 2016, Physical review. E.

[57]  Michele Campisi,et al.  The power of a critical heat engine , 2016, Nature Communications.

[58]  Karl Joulain,et al.  Quantum Thermal Transistor. , 2016, Physical review letters.

[59]  J. Parrondo,et al.  Entropy production and thermodynamic power of the squeezed thermal reservoir. , 2015, Physical review. E.

[60]  Todd R. Gingrich,et al.  Dissipation Bounds All Steady-State Current Fluctuations. , 2015, Physical review letters.

[61]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[62]  C. Gopalakrishnan Energy Dynamics , 2015 .

[63]  Rafael Sánchez,et al.  Three-terminal energy harvester with coupled quantum dots. , 2015, Nature nanotechnology.

[64]  Ronnie Kosloff,et al.  Equivalence of Quantum Heat Machines, and Quantum-Thermodynamic Signatures , 2015 .

[65]  Felipe Barra,et al.  The thermodynamic cost of driving quantum systems by their boundaries , 2015, Scientific Reports.

[66]  Gershon Kurizki,et al.  On the operation of machines powered by quantum non-thermal baths , 2015, 1508.06519.

[67]  J. Anders,et al.  Quantum thermodynamics , 2015, 1508.06099.

[68]  Gershon Kurizki,et al.  Multiatom Quantum Coherences in Micromasers as Fuel for Thermal and Nonthermal Machines , 2015, Entropy.

[69]  Paul Skrzypczyk,et al.  The role of quantum information in thermodynamics—a topical review , 2015, 1505.07835.

[70]  Javier Prior,et al.  Coherence-assisted single-shot cooling by quantum absorption refrigerators , 2015, 1504.01593.

[71]  A. Jordan,et al.  Heat diode and engine based on quantum Hall edge states , 2015, 1503.02926.

[72]  A. C. Barato,et al.  Thermodynamic uncertainty relation for biomolecular processes. , 2015, Physical review letters.

[73]  Bruno Leggio,et al.  Quantum thermal machines with single nonequilibrium environments , 2015, 1501.01791.

[74]  A. Aharony,et al.  Enhanced performance of joint cooling and energy production , 2014, 1410.4880.

[75]  Gerardo Adesso,et al.  Optimal performance of endoreversible quantum refrigerators. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[76]  Rafael Sánchez,et al.  Thermoelectric energy harvesting with quantum dots , 2014, Nanotechnology.

[77]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[78]  Ronnie Kosloff,et al.  Quantum heat engines and refrigerators: continuous devices. , 2013, Annual review of physical chemistry.

[79]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[80]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[81]  Antoine Georges,et al.  A Thermoelectric Heat Engine with Ultracold Atoms , 2013, Science.

[82]  Eric Lutz,et al.  Efficiency of heat engines coupled to nonequilibrium reservoirs , 2013, 1303.6558.

[83]  Takahiro Sagawa,et al.  Heat engine driven by purely quantum information. , 2013, Physical review letters.

[84]  Tao Wang,et al.  Effects of reservoir squeezing on quantum systems and work extraction. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  Markus Buttiker,et al.  Rectification of thermal fluctuations in a chaotic cavity heat engine , 2012, 1201.2796.

[86]  Ronnie Kosloff,et al.  Quantum absorption refrigerator. , 2011, Physical review letters.

[87]  David Sánchez,et al.  Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes , 2011, 1107.3576.

[88]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[89]  Massimiliano Esposito,et al.  Entropy production as correlation between system and reservoir , 2009, 0908.1125.

[90]  Eric Lutz,et al.  Energetics of quantum correlations , 2008, 0803.4067.

[91]  Herbert Walther,et al.  Extracting Work from a Single Heat Bath via Vanishing Quantum Coherence , 2003, Science.

[92]  Marlan O Scully,et al.  Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.

[93]  R. Kosloff,et al.  Quantum thermodynamic cooling cycle. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Shu-Kun Lin,et al.  Modern Thermodynamics: From Heat Engines to Dissipative Structures , 1999, Entropy.

[95]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[96]  E. O. Schulz-DuBois,et al.  Three-Level Masers as Heat Engines , 1959 .

[97]  Sandu Popescu The Smallest Thermal Machines , 2012 .