Distinct Roles for Intra- and Extracellular Siderophores during Aspergillus fumigatus Infection

Siderophore biosynthesis by the highly lethal mould Aspergillus fumigatus is essential for virulence, but non-existent in humans, presenting a rare opportunity to strategize therapeutically against this pathogen. We have previously demonstrated that A. fumigatus excretes fusarinine C and triacetylfusarinine C to capture extracellular iron, and uses ferricrocin for hyphal iron storage. Here, we delineate pathways of intra- and extracellular siderophore biosynthesis and show that A. fumigatus synthesizes a developmentally regulated fourth siderophore, termed hydroxyferricrocin, employed for conidial iron storage. By inactivation of the nonribosomal peptide synthetase SidC, we demonstrate that the intracellular siderophores are required for germ tube formation, asexual sporulation, resistance to oxidative stress, catalase A activity, and virulence. Restoration of the conidial hydroxyferricrocin content partially rescues the virulence of the apathogenic siderophore null mutant ΔsidA, demonstrating an important role for the conidial siderophore during initiation of infection. Abrogation of extracellular siderophore biosynthesis following inactivation of the acyl transferase SidF or the nonribosomal peptide synthetase SidD leads to complete dependence upon reductive iron assimilation for growth under iron-limiting conditions, partial sensitivity to oxidative stress, and significantly reduced virulence, despite normal germ tube formation. Our findings reveal distinct cellular and disease-related roles for intra- and extracellular siderophores during mammalian Aspergillus infection.

[1]  A. J. Foster,et al.  Ferricrocin synthesis in Magnaporthe grisea and its role in pathogenicity in rice. , 2007, Molecular plant pathology.

[2]  J. Heesemann,et al.  Role of Respiration in the Germination Process of the Pathogenic Mold Aspergillus fumigatus , 2007, Current Microbiology.

[3]  F. Dietrich,et al.  Phylogenomic analysis of non-ribosomal peptide synthetases in the genus Aspergillus. , 2006, Gene.

[4]  J. Kämper,et al.  A Ferroxidation/Permeation Iron Uptake System Is Required for Virulence in Ustilago maydis[W] , 2006, The Plant Cell Online.

[5]  Hubertus Haas,et al.  The Intracellular Siderophore Ferricrocin Is Involved in Iron Storage, Oxidative-Stress Resistance, Germination, and Sexual Development in Aspergillus nidulans , 2006, Eukaryotic Cell.

[6]  J. Mah,et al.  Upstream and Downstream Regulation of Asexual Development in Aspergillus fumigatus , 2006, Eukaryotic Cell.

[7]  Keiko Yoshioka,et al.  NPS6, Encoding a Nonribosomal Peptide Synthetase Involved in Siderophore-Mediated Iron Metabolism, Is a Conserved Virulence Determinant of Plant Pathogenic Ascomycetes[W] , 2006, The Plant Cell Online.

[8]  C. Philpott Iron uptake in fungi: a system for every source. , 2006, Biochimica et biophysica acta.

[9]  G. M. Rodríguez,et al.  Control of iron metabolism in Mycobacterium tuberculosis. , 2006, Trends in microbiology.

[10]  U. Ryde,et al.  Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases. , 2006, Journal of inorganic biochemistry.

[11]  H. Sung,et al.  Functional identification of high-affinity iron permeases from Fusarium graminearum. , 2006, Fungal genetics and biology : FG & B.

[12]  T. Hohl,et al.  Immune responses to Aspergillus fumigatus infections. , 2006, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation.

[13]  M. L. Nielsen,et al.  Efficient PCR-based gene targeting with a recyclable marker for Aspergillus nidulans. , 2006, Fungal genetics and biology : FG & B.

[14]  William H. Majoros,et al.  Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus , 2005, Nature.

[15]  J. Latgé,et al.  Aspergillus fumigatus: saprophyte or pathogen? , 2005, Current opinion in microbiology.

[16]  M. Ruddat,et al.  Siderophore accumulation and phytopathogenicity in Microbotryum violaceum. , 2005, Fungal genetics and biology : FG & B.

[17]  Sean Doyle,et al.  The expression of selected non-ribosomal peptide synthetases in Aspergillus fumigatus is controlled by the availability of free iron. , 2005, FEMS microbiology letters.

[18]  G. Jung,et al.  High-performance liquid chromatography of siderophores from fungi , 2005, Biology of Metals.

[19]  Ken Haynes,et al.  Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence , 2004, The Journal of experimental medicine.

[20]  Jae-Hyuk Yu,et al.  Regulators of G‐protein signalling in Aspergillus nidulans: RgsA downregulates stress response and stimulates asexual sporulation through attenuation of GanB (Gα) signalling , 2004, Molecular microbiology.

[21]  D. Howard Iron gathering by zoopathogenic fungi. , 2004, FEMS immunology and medical microbiology.

[22]  JAMES L. Smith,et al.  The Physiological Role of Ferritin-Like Compounds in Bacteria , 2004, Critical reviews in microbiology.

[23]  Hubertus Haas,et al.  The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l‐ornithine N 5‐monooxygenase (sidA) and a non‐ribosomal peptide synthetase (sidC) , 2003, Molecular microbiology.

[24]  J. Latgé,et al.  Catalases of Aspergillus fumigatus , 2003, Infection and Immunity.

[25]  M. Prevost,et al.  Killing of Aspergillus fumigatus by Alveolar Macrophages Is Mediated by Reactive Oxidant Intermediates , 2003, Infection and Immunity.

[26]  H. Haas Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage , 2003, Applied Microbiology and Biotechnology.

[27]  J. Ernst,et al.  Characterization of the Aspergillus nidulans transporters for the siderophores enterobactin and triacetylfusarinine C. , 2003, The Biochemical journal.

[28]  Thomas Patterson,et al.  Aspergillosis: Pathogenesis, clinical manifestations, and therapy , 2002 .

[29]  M. Momany Polarity in filamentous fungi: establishment, maintenance and new axes. , 2002, Current opinion in microbiology.

[30]  G. Weiss Iron and immunity: a double‐edged sword , 2002, European journal of clinical investigation.

[31]  A. Nishimura,et al.  Transformation of Aspergillus sp. and Trichoderma reesei Using the Pyrithiamine Resistance Gene (ptrA) of Aspergillus oryzae , 2002, Bioscience, biotechnology, and biochemistry.

[32]  H. Haas,et al.  SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans , 2001, Molecular microbiology.

[33]  N. Ramanan,et al.  A high-affinity iron permease essential for Candida albicans virulence. , 2000, Science.

[34]  C. Ratledge,et al.  Iron metabolism in pathogenic bacteria. , 2000, Annual review of microbiology.

[35]  E. Weinberg The Role of Iron In Protozoan and Fungal Infectious Diseases , 1999, The Journal of eukaryotic microbiology.

[36]  T. Adams,et al.  Asexual Sporulation in Aspergillus nidulans , 1998, Microbiology and Molecular Biology Reviews.

[37]  J. Aguirre,et al.  Two divergent catalase genes are differentially regulated during Aspergillus nidulans development and oxidative stress , 1997, Journal of bacteriology.

[38]  C. d’Enfert Fungal Spore Germination: Insights from the Molecular Genetics ofAspergillus nidulansandNeurospora crassa , 1997 .

[39]  G. Menz,et al.  [Allergic bronchopulmonary aspergillosis]. , 1996, Pneumologie.

[40]  L. Barton,et al.  Iron chelation in plants and soil microorganisms , 1994 .

[41]  S. Leong,et al.  sid1, a gene initiating siderophore biosynthesis in Ustilago maydis: molecular characterization, regulation by iron, and role in phytopathogenicity. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  G. Winkelmann 9 – KINETICS, ENERGETICS, AND MECHANISMS OF SIDEROPHORE IRON TRANSPORT IN FUNGI , 1993 .

[43]  G. Winkelmann,et al.  Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus , 1987, Journal of bacteriology.

[44]  R. Oliver,et al.  Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. , 1987, Gene.

[45]  B. Paw,et al.  Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12 , 1986, Journal of bacteriology.

[46]  Lewis J Smith,et al.  113 Bronchoalveolar lavage in allergic bronchopulmonary aspergillosis (ABPA) , 1985 .

[47]  B. Halliwell,et al.  Oxygen toxicity, oxygen radicals, transition metals and disease. , 1984, The Biochemical journal.

[48]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[49]  K. D. Macdonald,et al.  The genetics of Aspergillus nidulans. , 1953, Advances in genetics.