Adaptive variable space differential evolution algorithm based on population distribution

A novel memetic computing optimization algorithms, i.e. an adaptive variable space differential evolution algorithm (AVSDE), is proposed to improve the global optimization performance. AVSDE guides most individuals search in adaptive variable space (AVS) and employs adaptive mutation and adaptive control parameter. In AVSDE, AVS is determined by population global distribution information, and DE’s operators depend on the local information of the distance and direction. The performance of AVSDE is improved by integrating the global information with the local information. In addition, different mutation strategies are selected according to the evolution stage and random probability to balance AVSDE’s exploration and exploitation abilities, and adaptive control parameter is used to further enhance the performance of AVSDE. 19 scalable benchmark functions are employed to demonstrate the performance of AVSDE. Comparing with two well-tuned conventional DE and several state$$-$$of-the$$-$$art parameter adaptive DE variants, the whole performance of AVSDE is the best. Finally, two experiments are conducted to analyze the effect of the key parameters on AVSDE’s performance, and the optimal parameters are obtained.

[1]  William E. Hart,et al.  Memetic Evolutionary Algorithms , 2005 .

[2]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[3]  Janez Brest,et al.  Differential evolution and differential ant-stigmergy on dynamic optimisation problems , 2013, Int. J. Syst. Sci..

[4]  Yew-Soon Ong,et al.  A Probabilistic Memetic Framework , 2009, IEEE Transactions on Evolutionary Computation.

[5]  Janez Brest,et al.  Self-adaptive differential evolution algorithm using population size reduction and three strategies , 2011, Soft Comput..

[6]  Andries Petrus Engelbrecht,et al.  Empirical analysis of self-adaptive differential evolution , 2007, Eur. J. Oper. Res..

[7]  Jouni Lampinen,et al.  A Fuzzy Adaptive Differential Evolution Algorithm , 2005, Soft Comput..

[8]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[9]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[10]  B. Babu,et al.  Differential evolution for multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[11]  Yew-Soon Ong,et al.  Memetic Computation—Past, Present & Future [Research Frontier] , 2010, IEEE Computational Intelligence Magazine.

[12]  R. Storn,et al.  Differential Evolution - A simple and efficient adaptive scheme for global optimization over continuous spaces , 2004 .

[13]  M. Montaz Ali,et al.  Population set-based global optimization algorithms: some modifications and numerical studies , 2004, Comput. Oper. Res..

[14]  Jason H. Moore,et al.  Filling the gap between biology and computer science , 2008, BioData Mining.

[15]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[16]  Ferrante Neri,et al.  Memetic Compact Differential Evolution for Cartesian Robot Control , 2010, IEEE Computational Intelligence Magazine.

[17]  Carlos Cotta,et al.  Memetic algorithms and memetic computing optimization: A literature review , 2012, Swarm Evol. Comput..

[18]  Giovanni Iacca,et al.  Disturbed Exploitation compact Differential Evolution for limited memory optimization problems , 2011, Inf. Sci..

[19]  Mehmet Fatih Tasgetiren,et al.  Differential evolution algorithm with ensemble of parameters and mutation strategies , 2011, Appl. Soft Comput..

[20]  Liang Gao,et al.  A differential evolution algorithm with self-adapting strategy and control parameters , 2011, Comput. Oper. Res..

[21]  Carlos Cotta,et al.  A Primer on Memetic Algorithms , 2012, Handbook of Memetic Algorithms.

[22]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[23]  Ville Tirronen,et al.  Recent advances in differential evolution: a survey and experimental analysis , 2010, Artificial Intelligence Review.

[24]  Andries Petrus Engelbrecht,et al.  Self-adaptive Differential Evolution , 2005, CIS.

[25]  Amit Konar,et al.  Differential Evolution Using a Neighborhood-Based Mutation Operator , 2009, IEEE Transactions on Evolutionary Computation.

[26]  Jing J. Liang,et al.  Novel composition test functions for numerical global optimization , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[27]  Jing Tang,et al.  Diversity-adaptive parallel memetic algorithm for solving large scale combinatorial optimization problems , 2006, Soft Comput..

[28]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[29]  Janez Brest,et al.  Differential evolution for parameterized procedural woody plant models reconstruction , 2011, Appl. Soft Comput..

[30]  David Naso,et al.  Compact Differential Evolution , 2011, IEEE Transactions on Evolutionary Computation.

[31]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[32]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[33]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[34]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[35]  Qingfu Zhang,et al.  DE/EDA: A new evolutionary algorithm for global optimization , 2005, Inf. Sci..

[36]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[37]  Jason Teo,et al.  Self-adaptive population sizing for a tune-free differential evolution , 2009, Soft Comput..

[38]  Giovanni Iacca,et al.  Ockham's Razor in memetic computing: Three stage optimal memetic exploration , 2012, Inf. Sci..

[39]  William E. Hart,et al.  Recent Advances in Memetic Algorithms , 2008 .

[40]  B. M. Brown,et al.  Practical Non-Parametric Statistics. , 1981 .

[41]  Jason Teo,et al.  Differential Evolution with Self-adaptive Populations , 2005, KES.

[42]  Ferrante Neri,et al.  Differential Evolution with Scale Factor Local Search for Large Scale Problems , 2010 .

[43]  Carlos A. Coello Coello,et al.  A comparative study of differential evolution variants for global optimization , 2006, GECCO.

[44]  Lakhmi C. Jain,et al.  Knowledge-Based Intelligent Information and Engineering Systems , 2004, Lecture Notes in Computer Science.

[45]  David Naso,et al.  Real-Valued Compact Genetic Algorithms for Embedded Microcontroller Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[46]  Concha Bielza,et al.  A review of estimation of distribution algorithms in bioinformatics , 2008, BioData Mining.

[47]  J. Tvrdík,et al.  COMPETITIVE DIFFERENTIAL EVOLUTION , 2006 .

[48]  Pablo Moscato,et al.  Handbook of Memetic Algorithms , 2011, Studies in Computational Intelligence.

[49]  P. Moscato A Competitive-cooperative Approach to Complex Combinatorial Search , 1991 .