Coinductive Equivalences and Metrics for Higher-order Languages with Algebraic Effects. (Equivalences coinductives et métriques pour les langages d'ordre supérieur avec des effets algébriques)

This dissertation investigates notions of program equivalence and metric for higher-order sequential languages with algebraic effects. Computational effects are those aspects of computation that involve forms of interaction with the environment. Due to such an interactive behaviour, reasoning about effectful programs is well-known to be hard. This is especially true for higher-order effectful languages, where programs can be passed as input to, and returned as output by other programs, as well as perform side-effects. Additionally, when dealing with effectful languages, program equivalence is oftentimes too coarse, not allowing, for instance, to quantify the observable differences between programs. A natural way to overcome this problem is to re ne the notion of a program equivalence into the one of a program distance or program metric, this way allowing for a finer, quantitative analysis of program behaviour. A proper account of program distance, however, requires a more sophisticated theory than program equivalence, both conceptually and mathematically. This often makes the study of program distance way more di cult than the corresponding study of program equivalence.

[1]  Ugo Dal Lago,et al.  Probabilistic operational semantics for the lambda calculus , 2011, RAIRO Theor. Informatics Appl..

[2]  Rocco De Nicola,et al.  Testing Equivalence for Processes , 1983, ICALP.

[3]  Davide Sangiorgi,et al.  Eager Functions as Processes , 2018, LICS.

[4]  Davide Sangiorgi The Lazy Lambda Calculus in a Concurrency Scenario , 1994, Inf. Comput..

[5]  Ugo Dal Lago,et al.  Metric reasoning about λ-terms: The affine case , 2015, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science.

[6]  John C. Reynolds,et al.  Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.

[7]  Andre Scedrov,et al.  Bounded Linear Logic: A Modular Approach to Polynomial-Time Computability , 1992, Theor. Comput. Sci..

[8]  Alex K. Simpson,et al.  Behavioural Equivalence via Modalities for Algebraic Effects , 2018, ESOP.

[9]  Alberto Carraro,et al.  A Semantical and Operational Account of Call-by-Value Solvability , 2014, FoSSaCS.

[10]  Gordon D. Plotkin,et al.  Algebraic Operations and Generic Effects , 2003, Appl. Categorical Struct..

[11]  Dariusz Biernacki,et al.  Handle with care: relational interpretation of algebraic effects and handlers , 2018, Proc. ACM Program. Lang..

[12]  Stefano Kasangian,et al.  Bicategories of spans and relations , 1984 .

[13]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[14]  C.-H. Luke Ong,et al.  Non-determinism in a functional setting , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[15]  Albert Thijs,et al.  Simulation and fixpoint semantics , 1996 .

[16]  Paul Blain Levy Amb Breaks Well-Pointedness, Ground Amb Doesn't , 2007, MFPS.

[17]  Ugo Dal Lago,et al.  On Probabilistic Applicative Bisimulation and Call-by-Value λ-Calculi , 2014, ESOP.

[18]  Paolo Baldan,et al.  Behavioral Metrics via Functor Lifting , 2014, FSTTCS.

[19]  Robin Milner,et al.  Definition of standard ML , 1990 .

[20]  Lynn Arthur Steen,et al.  Counterexamples in Topology , 1970 .

[21]  Søren B. Lassen,et al.  Eager normal form bisimulation , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[22]  J. W. de Bakker,et al.  Denotational semantics of concurrency , 1982, STOC '82.

[23]  Paul Blain Levy,et al.  Similarity Quotients as Final Coalgebras , 2011, FoSSaCS.

[24]  Alexander Kurz,et al.  Relation lifting, a survey , 2016, J. Log. Algebraic Methods Program..

[25]  Soren Lassen Relational reasoning about contexts , 1997 .

[26]  Dariusz Biernacki,et al.  Proving Soundness of Extensional Normal-Form Bisimilarities , 2017, MFPS.

[27]  S. Abramsky The lazy lambda calculus , 1990 .

[28]  Huimin Lin,et al.  Metrics for Differential Privacy in Concurrent Systems , 2014, FORTE.

[29]  Davide Sangiorgi,et al.  Enhancements of the bisimulation proof method , 2012, Advanced Topics in Bisimulation and Coinduction.

[30]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[31]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[32]  Jean Goubault-Larrecq,et al.  Logical Relations for Monadic Types , 2002 .

[33]  Ugo de'Liguoro,et al.  Non Deterministic Extensions of Untyped Lambda-Calculus , 1995, Inf. Comput..

[34]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[35]  Søren B. Lassen,et al.  Bisimulation in Untyped Lambda Calculus: Böhm Trees and Bisimulation up to Context , 1999, MFPS.

[36]  David Turner,et al.  Research topics in functional programming , 1990 .

[37]  S. Vickers Topology via Logic , 1989 .

[38]  Anil Madhavapeddy,et al.  Concurrent System Programming with Effect Handlers , 2017, TFP.

[39]  Gordon D. Plotkin,et al.  Handling Algebraic Effects , 2013, Log. Methods Comput. Sci..

[40]  Erik P. de Vink,et al.  Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach , 1997, Theor. Comput. Sci..

[41]  Dirk Hofmann,et al.  Topological theories and closed objects , 2007 .

[42]  Luca Aceto,et al.  Advanced Topics in Bisimulation and Coinduction , 2012, Cambridge tracts in theoretical computer science.

[43]  Andrew W. Appel,et al.  An indexed model of recursive types for foundational proof-carrying code , 2001, TOPL.

[44]  Shin-ya Katsumata,et al.  Relating computational effects by ⊤⊤-lifting , 2013, Inf. Comput..

[45]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[47]  Ana Sokolova,et al.  Generic Trace Semantics via Coinduction , 2007, Log. Methods Comput. Sci..

[48]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[49]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[50]  E. Riehl Basic concepts of enriched category theory , 2014 .

[51]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[52]  Kim G. Larsen,et al.  Bisimulation through Probabilistic Testing , 1991, Inf. Comput..

[53]  W. Desch,et al.  Wasserstein metric and subordination , 2008 .

[54]  Bart Jacobs,et al.  Simulations in Coalgebra , 2003, CMCS.

[55]  Ian Stark,et al.  Triangulating context lemmas , 2018, CPP.

[56]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[57]  Benjamin C. Pierce,et al.  Distance makes the types grow stronger: a calculus for differential privacy , 2010, ICFP '10.

[58]  Paolo Baldan,et al.  Towards Trace Metrics via Functor Lifting , 2015, CALCO.

[59]  Alex K. Simpson,et al.  Basic Operational Preorders for Algebraic Effects in General, and for Combined Probability and Nondeterminism in Particular , 2018, CSL.

[60]  Alexandra Silva,et al.  Trace semantics via determinization , 2015, J. Comput. Syst. Sci..

[61]  Patricia Johann,et al.  A Generic Operational Metatheory for Algebraic Effects , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[62]  Marco Gaboardi,et al.  A semantic account of metric preservation , 2017, POPL.

[63]  Thomas Leventis Probabilistic Böhm Trees and Probabilistic Separation , 2018, LICS.

[64]  Yuxin Deng,et al.  Behavioural Pseudometrics for Nondeterministic Probabilistic Systems , 2016, SETTA.

[65]  Ugo Dal Lago,et al.  Metric Reasoning About \lambda -Terms: The General Case , 2017, ESOP.

[66]  C.-H. Luke Ong,et al.  Full Abstraction in the Lazy Lambda Calculus , 1993, Inf. Comput..

[67]  Ferdinand de Saussure Course in General Linguistics , 1916 .

[68]  Raheel Ahmad,et al.  The π-Calculus: A theory of mobile processes , 2008, Scalable Comput. Pract. Exp..

[69]  Ugo Dal Lago,et al.  On coinductive equivalences for higher-order probabilistic functional programs , 2013, POPL.

[70]  Ryan Culpepper,et al.  Contextual Equivalence for Probabilistic Programs with Continuous Random Variables and Scoring , 2017, ESOP.

[71]  Dirk Hofmann,et al.  A cottage industry of lax extensions , 2015, 1507.08172.

[72]  Paul Blain Levy,et al.  From Applicative to Environmental Bisimulation , 2011, MFPS.

[73]  A. Church The calculi of lambda-conversion , 1941 .

[74]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .