Structure-based design and in vivo anti-arthritic activity evaluation of a potent dipeptidyl cyclopropyl nitrile inhibitor of cathepsin C.

[1]  N. Thakker,et al.  Therapeutic targeting of cathepsin C: from pathophysiology to treatment , 2018, Pharmacology & therapeutics.

[2]  M. Battino,et al.  Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis , 2018, The Journal of Biological Chemistry.

[3]  B. Miller,et al.  Epithelial desquamation observed in a phase I study of an oral cathepsin C inhibitor (GSK2793660) , 2017, British journal of clinical pharmacology.

[4]  M. Si-Tahar,et al.  Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases , 2017, Biochemical pharmacology.

[5]  S. Connolly,et al.  Discovery of Second Generation Reversible Covalent DPP1 Inhibitors Leading to an Oxazepane Amidoacetonitrile Based Clinical Candidate (AZD7986). , 2016, Journal of medicinal chemistry.

[6]  J. Cowland,et al.  Granulopoiesis and granules of human neutrophils , 2016, Immunological reviews.

[7]  F. Nielsen,et al.  Papillon-Lefèvre syndrome patient reveals species-dependent requirements for neutrophil defenses. , 2014, The Journal of clinical investigation.

[8]  R. Austin,et al.  Cathepsin C inhibitors: property optimization and identification of a clinical candidate. , 2014, Journal of medicinal chemistry.

[9]  K. Wiesmüller,et al.  NSP4 Is Stored in Azurophil Granules and Released by Activated Neutrophils as Active Endoprotease with Restricted Specificity , 2013, The Journal of Immunology.

[10]  A. Lesner,et al.  Neutrophil proteinase 3 and dipeptidyl peptidase I (cathepsin C) as pharmacological targets in granulomatosis with polyangiitis (Wegener granulomatosis) , 2013, Seminars in Immunopathology.

[11]  Garib N. Murshudov,et al.  JLigand: a graphical tool for the CCP4 template-restraint library , 2012, Acta crystallographica. Section D, Biological crystallography.

[12]  Olga Vasiljeva,et al.  Cysteine cathepsins: From structure, function and regulation to new frontiers , 2011, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics.

[13]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[14]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[15]  Baoguang Zhao,et al.  Discovery of novel cyanamide-based inhibitors of cathepsin C. , 2011, ACS medicinal chemistry letters.

[16]  M. Horwitz,et al.  Neutrophil Elastase, Proteinase 3, and Cathepsin G as Therapeutic Targets in Human Diseases , 2010, Pharmacological Reviews.

[17]  M. Percival,et al.  Therapeutic utility and medicinal chemistry of cathepsin C inhibitors. , 2010, Current topics in medicinal chemistry.

[18]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[19]  Dramane I Laine,et al.  Inhibitors of cathepsin C (dipeptidyl peptidase I) , 2010, Expert opinion on therapeutic patents.

[20]  M. Gütschow,et al.  Development of nitrile-based peptidic inhibitors of cysteine cathepsins. , 2010, Current topics in medicinal chemistry.

[21]  C. Bayly,et al.  Design and synthesis of dipeptidyl nitriles as potent, selective, and reversible inhibitors of cathepsin C. , 2009, Bioorganic & medicinal chemistry letters.

[22]  P. Dhanrajani Papillon-Lefevre syndrome: clinical presentation and a brief review. , 2009, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[23]  N. Méthot,et al.  In Vivo Inhibition of Serine Protease Processing Requires a High Fractional Inhibition of Cathepsin C , 2008, Molecular Pharmacology.

[24]  B. Korkmaz,et al.  Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. , 2008, Biochimie.

[25]  N. Méthot,et al.  Inhibition of the Activation of Multiple Serine Proteases with a Cathepsin C Inhibitor Requires Sustained Exposure to Prevent Pro-enzyme Processing* , 2007, Journal of Biological Chemistry.

[26]  G. Petersen,et al.  The crystal structure of human dipeptidyl peptidase I (cathepsin C) in complex with the inhibitor Gly-Phe-CHN2. , 2007, The Biochemical journal.

[27]  D. Jenne,et al.  Production and applications of recombinant proteinase 3, Wegener's autoantigen: problems and perspectives. , 2006, Clinical Nephrology.

[28]  J. Pedersen,et al.  Dipeptidyl nitriles as human dipeptidyl peptidase I inhibitors. , 2006, Bioorganic & medicinal chemistry letters.

[29]  C. Pham,et al.  Dipeptidyl peptidase I regulates the development of collagen-induced arthritis. , 2005, Arthritis and rheumatism.

[30]  T. Ley,et al.  Papillon-Lefèvre Syndrome: Correlating the Molecular, Cellular, and Clinical Consequences of Cathepsin C/Dipeptidyl Peptidase I Deficiency in Humans1 , 2004, The Journal of Immunology.

[31]  E. Haneke The Papillon-Lefèvre syndrome: Keratosis palmoplantaris with periodontopathy , 1979, Human Genetics.

[32]  J. Powers,et al.  Dipeptidyl peptidase I: importance of progranzyme activation sequences, other dipeptide sequences, and the N-terminal amino group of synthetic substrates for enzyme activity. , 2002, Archives of biochemistry and biophysics.

[33]  C. Pham,et al.  Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. , 2002, The Journal of clinical investigation.

[34]  D Lamba,et al.  Structure of human dipeptidyl peptidase I (cathepsin C): exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases , 2001, The EMBO journal.

[35]  V. Turk,et al.  Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. , 2001, Biochemistry.

[36]  G N Murshudov,et al.  Use of TLS parameters to model anisotropic displacements in macromolecular refinement. , 2001, Acta crystallographica. Section D, Biological crystallography.

[37]  Emma Roberts,et al.  Loss-of-function mutations in the cathepsin C gene result in periodontal disease and palmoplantar keratosis , 1999, Nature Genetics.

[38]  D. Bowden,et al.  Mutations of the cathepsin C gene are responsible for Papillon-Lefèvre syndrome , 1999, Journal of medical genetics.

[39]  R. Pain,et al.  Location of the binding site for chloride ion activation of cathepsin C. , 1999, European journal of biochemistry.

[40]  S. W. Dahl,et al.  Active recombinant rat dipeptidyl aminopeptidase I (cathepsin C) produced using the baculovirus expression system. , 1998, Protein expression and purification.

[41]  V. Turk,et al.  Oligomeric Structure and Substrate Induced Inhibition of Human Cathepsin C (*) , 1995, The Journal of Biological Chemistry.

[42]  D. Thiele,et al.  Dipeptidyl peptidase I is enriched in granules of in vitro- and in vivo-activated cytotoxic T lymphocytes. , 1993, Journal of immunology.

[43]  P. Lipsky,et al.  Generation of active myeloid and lymphoid granule serine proteases requires processing by the granule thiol protease dipeptidyl peptidase I. , 1993, The Journal of biological chemistry.

[44]  A. Berger,et al.  On the size of the active site in proteases. I. Papain. , 1967, Biochemical and biophysical research communications.

[45]  V. Anderson,et al.  THE SYNDROME OF PALMAR-PLANTAR HYPERKERATOSIS AND PREMATURE PERIODONTAL DESTRUCTION OF THE TEETH. A CLINICAL AND GENETIC ANALYSIS OF THE PAPILLON-LEF'EVRE SYNDROME. , 1964, The Journal of pediatrics.