Impact of the pulse contrast ratio on molybdenum Kα generation by ultrahigh intensity femtosecond laser solid interaction

[1]  M. Tao,et al.  Laser-driven powerful kHz hard x-ray source , 2017 .

[2]  Sylvain Fourmaux,et al.  Laser-based Kα X-ray emission characterization using a high contrast ratio and high-power laser system , 2016 .

[3]  M. Sentis,et al.  High repetition rate (100 Hz), high peak power, high contrast femtosecond laser chain , 2016, SPIE LASE.

[4]  Z. Sheng,et al.  Contrasting levels of absorption of intense femtosecond laser pulses by solids , 2015, Scientific Reports.

[5]  A. Ravasio,et al.  X-ray absorptionKedge as a diagnostic of the electronic temperature in warm dense aluminum , 2015 .

[6]  M. Li,et al.  Intense high repetition rate Mo Kα x-ray source generated from laser solid interaction for imaging application. , 2014, The Review of scientific instruments.

[7]  Thomas Elsaesser,et al.  High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses , 2014, Nature Photonics.

[8]  J. A. Chakera,et al.  Study of 1–8 keV K-α x-ray emission from high intensity femtosecond laser produced plasma , 2014 .

[9]  T. Elsaesser,et al.  Perspective: structural dynamics in condensed matter mapped by femtosecond x-ray diffraction. , 2014, The Journal of chemical physics.

[10]  J. Lehman,et al.  Use of radiation pressure for measurement of high-power laser emission. , 2013, Optics letters.

[11]  O. Chalus,et al.  Suppression of parasitic lasing in high energy, high repetition rate Ti:sapphire laser amplifiers. , 2012, Optics letters.

[12]  A. Andreev,et al.  A kinematic model of relativistic laser absorption in an overdense plasma , 2012 .

[13]  J. Kieffer,et al.  Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system. , 2011, Optics Express.

[14]  T Shimomura,et al.  Efficient multi-keV x-ray generation from a high-Z target irradiated with a clean ultra-short laser pulse. , 2011, Optics express.

[15]  K. Sokolowski-Tinten,et al.  Optimized Kalpha x-ray flashes from femtosecond-laser-irradiated foils. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  D. Descamps,et al.  Broadband, high dynamics and high resolution charge coupled device-based spectrometer in dynamic mode for multi-keV repetitive x-ray sources. , 2009, The Review of scientific instruments.

[17]  Z. Sheng,et al.  Bulk resonance absorption induced by relativistic effects in laser-plasma interaction , 2009, 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics.

[18]  A. Król,et al.  Kα x-ray emission characterization of 100 Hz, 15 mJ femtosecond laser system with high contrast ratio , 2009, Applied physics. B, Lasers and optics.

[19]  J. Nees,et al.  Directional properties of hard x-ray sources generated by tightly focused ultrafast laser pulses , 2008 .

[20]  J. Koga,et al.  Study of x-ray emission enhancement via a high-contrast femtosecond laser interacting with a solid foil. , 2006, Physical review letters.

[21]  S. Fourmaux,et al.  Evaluation of ultrafast laser-based hard x-ray sources for phase-contrast imaging , 2007 .

[22]  A. Król,et al.  Hard X-ray generation from solids driven by relativistic intensity in the lambda-cubed regime , 2006 .

[23]  Paul Gibbon,et al.  Short Pulse Laser Interactions with Matter: An Introduction , 2005 .

[24]  Gerard Mourou,et al.  Study of hard x-ray emission from intense femtosecond Ti:sapphire laser–solid target interactions , 2004 .

[25]  J. Santos,et al.  Cross sections for K-shell ionization of atoms by electron impact , 2003 .

[26]  S. Fourmaux,et al.  Non-thermal melting in semiconductors measured at femtosecond resolution , 2001, Nature.

[27]  C. Reich,et al.  Numerical studies on the properties of femtosecond laser plasma Kα sources , 2001 .

[28]  E. Fill,et al.  Spatial characteristics of Kα radiation from weakly relativistic laser plasmas , 2000 .

[29]  C. Hombourger An empirical expression for K-shell ionization cross section by electron impact , 1998 .

[30]  J. Laserna,et al.  Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation , 1998 .

[31]  Antoine Rousse,et al.  Experimental study of the interaction of subpicosecond laser pulses with solid targets of varying initial scale lengths , 1997 .

[32]  S. Wilks,et al.  Absorption of ultrashort, ultra-intense laser light by solids and overdense plasmas , 1997 .

[33]  S. C. Prasad,et al.  Laser-based microfocused x-ray source for mammography: feasibility study. , 1997, Medical physics.

[34]  Miquel,et al.  Experimental Confirmation of Ponderomotive-Force Electrons Produced by an Ultrarelativistic Laser Pulse on a Solid Target. , 1996, Physical review letters.

[35]  J. H. Hubbell,et al.  Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest , 1995 .

[36]  D. Meyerhofer,et al.  Strong Kα Emission in Picosecond Laser-Plasma Interactions , 1993, Shortwavelength V: Physics with Intense Laser Pulses.

[37]  Liu,et al.  Competition between ponderomotive and thermal forces in short-scale-length laser plasmas. , 1992, Physical review letters.

[38]  Tabak,et al.  Absorption of ultra-intense laser pulses. , 1992, Physical review letters.

[39]  Bell,et al.  Collisionless absorption in sharp-edged plasmas. , 1992, Physical review letters.

[40]  Rozmus,et al.  Skin effect and interaction of short laser pulses with dense plasmas. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[41]  M. H. Key,et al.  The Physics of Laser Plasma Interactions , 1989 .

[42]  Brunel Not-so-resonant, resonant absorption. , 1987, Physical review letters.

[43]  W. Kruer,et al.  J×B heating by very intense laser light , 1985 .

[44]  E. Casnati,et al.  CORRIGENDUM: An empirical approach to K-shell ionisation cross section by electrons , 1982 .

[45]  J. Foulkes I. Introduction , 2010, New Surveys in the Classics.

[46]  J. Affeldt,et al.  The feasibility study , 2019, The Information System Consultant’s Handbook.

[47]  A. S. Penfold,et al.  Range-Energy Relations for Electrons and the Determination of Beta-Ray End-Point Energies by Absorption , 1952 .