A comparative study of different physics-based approaches to modelling of piezoelectric actuators

This article reviews different approaches to modelling of piezoelectric actuators (PZA). The electric charge/voltage variation causes shape deformation of piezoelectric materials. If the piezoelectric material is in contact with a structure, it has the tendency to actuate that structure; in this case, the piezoelectric material plays the role of an actuator. Piezoelectric actuators are the foremost actuators in nanopositioning, manipulating material at nano/micro metre scale, applicable in Atomic Force Microscopy (AFM), highly precise manufacturing and .... In nanopositioning, displacement of piezoelectric actuators should be precisely controlled. However, the application of displacement sensors is limited by their high expense and practical constraints. Estimating displacement of piezoelectric actuators, based on their input voltage, can eliminate expensive displacement sensors from control systems. Therefore, several models have been developed to predict the displacement of piezoelectric actuators based on their input voltage. Models are basically created either merely based on data mapping, black box models, or inspired by physical phenomena, physics-based models. Physics-based models are superior in offering a clear definition of the relationship between all parts of the system dynamics. The main physics-based models are Kelvin-Voigt, Maxwell-Slip, Duhem, Preisach and Prandtl-Ishlinskii models; for each one some critical features such as rate-dependency and reversibility are addressed in this paper. This article compares the mentioned approaches and states advantages/disadvantages of each method. Parameter identification in these models is done by adhoc and non-optimal methods motivating researchers to look for alternative methods.

[1]  S. O. R. Moheimani,et al.  $Q$ Control of an Atomic Force Microscope Microcantilever: A Sensorless Approach , 2011, Journal of Microelectromechanical Systems.

[2]  In Lee,et al.  Vibration and actuation characteristics of composite structures with a bonded piezo-ceramic actuator , 1999 .

[3]  Steven Grainger,et al.  Fuzzy modeling of a piezoelectric actuator , 2012 .

[4]  I. Mayergoyz,et al.  Generalized Preisach model of hysteresis , 1988 .

[5]  M. Mohammadzaheri,et al.  Intelligent modeling of a piezoelectric tube actuator , 2012, 2012 International Symposium on Innovations in Intelligent Systems and Applications.

[6]  JinHyoung Oh,et al.  Identification of rate-dependent hysteresis using the semilinear Duhem model , 2004, Proceedings of the 2004 American Control Conference.

[7]  Claudiu Valentin Suciu,et al.  Modeling and Simulation of a Vehicle Suspension with Variable Damping and Elastic Properties versus the Excitation Frequency , 2011, 2011 International Conference on P2P, Parallel, Grid, Cloud and Internet Computing.

[8]  Yonghong Tan,et al.  Modeling of hysteresis in piezoelectric actuators using neural networks , 2009 .

[9]  Ridha Ben Mrad,et al.  Electromechanical Modeling of Piezoceramic Actuators for Dynamic Loading Applications , 2006 .

[10]  Chi-Ying Lin,et al.  High performance motion controller design for linear piezoelectric ceramic motors , 2011, 2011 9th World Congress on Intelligent Control and Automation.

[11]  Chun-Yi Su,et al.  Development of the rate-dependent Prandtl–Ishlinskii model for smart actuators , 2008 .

[12]  Steven Grainger,et al.  A comparative study on the use of black box modelling for piezoelectric actuators , 2012 .

[13]  Jeong Hoon Ryou,et al.  Model identification for impact dynamics of a piezoelectric microactuator , 2012 .

[14]  Michael Krommer,et al.  On the Use of Piezoelectric Sensors in Structural Mechanics: Some Novel Strategies , 2010, Sensors.

[15]  Dragan Damjanovic,et al.  Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics , 2001 .

[16]  L. E. Cross,et al.  Constitutive equations of symmetrical triple layer piezoelectric benders , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[17]  Michael Goldfarb,et al.  A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators , 1997 .

[18]  Chun-Yi Su,et al.  Operator-based robust control for nonlinear systems with Prandtl–Ishlinskii hysteresis , 2011, Int. J. Syst. Sci..

[19]  Wei Tech Ang,et al.  Feedforward Controller With Inverse Rate-Dependent Model for Piezoelectric Actuators in Trajectory-Tracking Applications , 2007, IEEE/ASME Transactions on Mechatronics.

[20]  T.-J. Yeh,et al.  An integrated physical model that characterizes creep and hysteresis in piezoelectric actuators , 2008, Simul. Model. Pract. Theory.

[21]  A. Saidi,et al.  Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers , 2012 .

[22]  Gangbing Song,et al.  A comprehensive model for piezoceramic actuators: modelling, validation and application , 2009 .

[23]  J. Soderkvist Using FEA to treat piezoelectric low-frequency resonators , 1998, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  Mohammed Douimi,et al.  Piezo-actuators modeling for smart applications , 2011 .

[25]  M. Weinberg Working equations for piezoelectric actuators and sensors , 1999 .

[26]  Bernard D. Coleman,et al.  On a class of constitutive relations for ferromagnetic hysteresis , 1987 .

[27]  S. S. Aphale,et al.  High speed nano-scale positioning using a piezoelectric tube actuator with active shunt control , 2007 .

[28]  C. Su,et al.  Experimental characterization and modeling of rate-dependent hysteresis of a piezoceramic actuator , 2009 .

[29]  Barbara Kaltenbacher,et al.  Efficient Modeling of Ferroelectric Behavior for the Analysis of Piezoceramic Actuators , 2008 .

[30]  Yonghong Tan,et al.  Modeling hysteresis in piezoelectric actuators using NARMAX models , 2009 .

[31]  Bijan Shirinzadeh,et al.  Robust Adaptive Constrained Motion Tracking Control of Piezo-Actuated Flexure-Based Mechanisms for Micro/Nano Manipulation , 2011, IEEE Transactions on Industrial Electronics.

[32]  S. O. Reza Moheimani,et al.  Sensor-less Vibration Suppression and Scan Compensation for Piezoelectric Tube Nanopositioners , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[33]  Wen-Fang Xie,et al.  Neural network‐based adaptive control of piezoelectric actuators with unknown hysteresis , 2009 .

[34]  Ronald S. Fearing,et al.  Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[35]  Thomas J. Royston,et al.  Modeling the effect of piezoceramic hysteresis in structural vibration control , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[36]  Hao Ying,et al.  General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators , 1998, IEEE Trans. Fuzzy Syst..

[37]  L. E. Cross,et al.  Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields , 1999 .

[38]  C. Su,et al.  Neural network‐based adaptive control of piezoelectric actuators with unknown hysteresis , 2009 .

[39]  Seung-Woo Kim,et al.  Improvement of scanning accuracy of PZT piezoelectric actuators by feed-forward model-reference control , 1994 .

[40]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[41]  Tan Yonghong,et al.  Identification of Dynamic Hysteresis Based on Duhem Model , 2011, 2011 Fourth International Conference on Intelligent Computation Technology and Automation.

[42]  Phil R Dahl,et al.  Measurement of Solid Friction Parameters of Ball Bearings , 1977 .

[43]  Wonkyu Moon,et al.  Sensorless control for hysteresis compensation of AFM scanner by modified Rayleigh model , 2010 .

[44]  A. Pisano,et al.  Modeling and optimal design of piezoelectric cantilever microactuators , 1997 .

[45]  T. Tjahjowidodo,et al.  A New Approach to Modeling Hysteresis in a Pneumatic Artificial Muscle Using The Maxwell-Slip Model , 2011, IEEE/ASME Transactions on Mechatronics.

[46]  G. S. Ramtekkar,et al.  Free vibration analysis of delaminated beams using mixed finite element model , 2009 .

[47]  Publication and Proposed Revision of ANSI/IEEE Standard 176-1987 "ANSI/IEEE Standard on Piezoelectricity" , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[48]  Robert J. Wood,et al.  Nonlinear Performance Limits for High Energy Density Piezoelectric Bending Actuators , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[49]  V. Hassani,et al.  Integrated Rate and Inertial dependent Prandtl-Ishlinskii model for piezoelectric actuator , 2011, 2011 2nd International Conference on Instrumentation Control and Automation.

[50]  P Kallio,et al.  Displacement Control of Piezoelectric Actuators Using Current and Voltage , 2011, IEEE/ASME Transactions on Mechatronics.

[51]  S. Fassois,et al.  Duhem modeling of friction-induced hysteresis , 2008, IEEE Control Systems.

[52]  Dong Wang,et al.  An asymmetric PI hysteresis model for piezoceramics in nanoscale AFM imaging , 2011, 2011 6th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[53]  Sushant M. Dutta Dynamic hysteresis modeling and applications , 2004 .

[54]  Dennis S. Bernstein,et al.  Semilinear Duhem model for rate-independent and rate-dependent hysteresis , 2005, IEEE Transactions on Automatic Control.

[55]  M. Hodgdon Applications of a theory of ferromagnetic hysteresis , 1988 .