Generalized sensitivity functions for size-structured population models
暂无分享,去创建一个
[1] Martin Fink,et al. A Respiratory System Model: Parameter Estimation and Sensitivity Analysis , 2008, Cardiovascular engineering.
[2] Francis Filbet,et al. Numerical Simulation of the Smoluchowski Coagulation Equation , 2004, SIAM J. Sci. Comput..
[3] Daniel Schneditz,et al. Cardiovascular and Respiratory Systems: Modeling, Analysis, and Control , 2006 .
[4] Wilhelm G. Wolfer,et al. Void nucleation, growth, and coalescence in irradiated metals , 2008, 0803.3829.
[5] Franz Kappel,et al. Comparison of optimal design methods in inverse problems , 2011, Inverse problems.
[6] Robert L. Pego,et al. Mathematik in den Naturwissenschaften Leipzig Dynamical scaling in Smoluchowski ’ s coagulation equations : uniform convergence , 2003 .
[7] D. Ruppert,et al. Transformation and Weighting in Regression , 1988 .
[8] Gerardo Chowell,et al. Mathematical and statistical estimation approaches in epidemiology , 2009 .
[9] Lisa G. Stanley,et al. Design Sensitivity Analysis: Computational Issues on Sensitivity Equation Methods , 2002 .
[10] Shripad Tuljapurkar,et al. Structured-Population Models in Marine, Terrestrial, and Freshwater Systems , 1997, Population and Community Biology Series.
[11] B. Fitzpatrick,et al. Modeling aggregation and growth processes in an algal population model: analysis and computations , 1997 .
[12] J. Cushing. Some competition models for size-structured populations , 1990 .
[13] Giuseppe Baselli,et al. Modelling and disentangling physiological mechanisms: linear and nonlinear identification techniques for analysis of cardiovascular regulation , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[14] Man Hoi Lee,et al. A SURVEY OF NUMERICAL SOLUTIONS TO THE COAGULATION EQUATION , 2008 .
[15] M. Smoluchowski. Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .
[16] Franz Kappel,et al. Modeling the human cardiovascular control response to blood volume loss due to hemorrhage , 2006 .
[17] Claudio Cobelli,et al. Generalized Sensitivity Functions in Physiological System Identification , 1999, Annals of Biomedical Engineering.
[18] Toshiyuki Fukushige,et al. On the mass distribution of planetesimals in the early runaway stage , 1998 .
[19] On the Calibration of a Size-Structured Population Model from Experimental Data , 2009, Acta biotheoretica.
[20] Robert M. Ziff,et al. Kinetics of polymer gelation , 1980 .
[21] D. Wolf-Gladrow,et al. The relationship between physical aggregation of phytoplankton and particle flux: a numerical model , 1992 .
[22] J. Cushing. An introduction to structured population dynamics , 1987 .
[23] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[24] David Ruppert,et al. Transformation and Weighting , 2014 .
[25] T. Kiørboe. Formation and fate of marine snow: small-scale processes with large- scale implications , 2001 .
[26] Stefan Heinrich,et al. Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage , 2009 .
[27] H. Müller,et al. Zur allgemeinen Theorie ser raschen Koagulation: Die Koagulation von Stäbchen- und Blättchenkolloiden; die Theorie beliebig polydisperser Systeme und der Strömungskoagulation , 1928 .
[28] Harvey Thomas Banks,et al. Generalized sensitivities and optimal experimental design , 2010 .
[29] M. Smoluchowski,et al. Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .
[30] J. Silk,et al. The development of structure in the expanding universe , 1978 .
[31] W. Marsden. I and J , 2012 .
[32] D. Bortz,et al. Klebsiella pneumoniae Flocculation Dynamics , 2008, Bulletin of mathematical biology.
[33] Man Hoi Lee,et al. On the Validity of the Coagulation Equation and the Nature of Runaway Growth , 2000 .
[34] Harvey Thomas Banks,et al. Sensitivity functions and their uses in inverse problems , 2007 .
[35] A. S. Ackleh. Parameter estimation in a structured algal coagulation-fragmentation model , 1997 .
[36] Jonathan A. D. Wattis,et al. An introduction to mathematical models of coagulation–fragmentation processes: A discrete deterministic mean-field approach , 2006 .
[37] D. Aldous. Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .
[38] Lennart Persson,et al. Size-Structured Populations , 1988, Springer Berlin Heidelberg.
[39] S. Ellner,et al. SIZE‐SPECIFIC SENSITIVITY: APPLYING A NEW STRUCTURED POPULATION MODEL , 2000 .
[40] Claudio Cobelli,et al. Sensitivity Analysis of Retrovirus HTLV-1 Transactivation , 2011, J. Comput. Biol..
[41] Hiro-Sato Niwa,et al. School size statistics of fish , 1998, Journal of theoretical biology.
[42] J. Klett,et al. Microphysics of Clouds and Precipitation , 1978, Nature.