Generalized sensitivity functions for size-structured population models

Abstract Size-structured population models provide a popular means to mathematically describe phenomena such as bacterial aggregation, schooling fish, and planetesimal evolution. For parameter estimation, a generalized sensitivity function (GSF) provides a tool that quantifies the impact of data from specific regions of the experimental domain. This function helps to identify the most relevant data subdomains, which enhances the optimization of experimental design. To our knowledge, GSFs have not been used in the partial differential equation (PDE) realm, so we provide a novel PDE extension of the discrete and continuous ordinary differential equation (ODE) concepts of Thomaseth and Cobelli and Banks et al. respectively. We analyze a GSF in the context of size-structured population models, and specifically analyze the Smoluchowski coagulation equation to determine the most relevant time and volume domains for three, distinct aggregation kernels. Finally, we provide evidence that parameter estimation for the Smoluchowski coagulation equation does not require post-gelation data.

[1]  Martin Fink,et al.  A Respiratory System Model: Parameter Estimation and Sensitivity Analysis , 2008, Cardiovascular engineering.

[2]  Francis Filbet,et al.  Numerical Simulation of the Smoluchowski Coagulation Equation , 2004, SIAM J. Sci. Comput..

[3]  Daniel Schneditz,et al.  Cardiovascular and Respiratory Systems: Modeling, Analysis, and Control , 2006 .

[4]  Wilhelm G. Wolfer,et al.  Void nucleation, growth, and coalescence in irradiated metals , 2008, 0803.3829.

[5]  Franz Kappel,et al.  Comparison of optimal design methods in inverse problems , 2011, Inverse problems.

[6]  Robert L. Pego,et al.  Mathematik in den Naturwissenschaften Leipzig Dynamical scaling in Smoluchowski ’ s coagulation equations : uniform convergence , 2003 .

[7]  D. Ruppert,et al.  Transformation and Weighting in Regression , 1988 .

[8]  Gerardo Chowell,et al.  Mathematical and statistical estimation approaches in epidemiology , 2009 .

[9]  Lisa G. Stanley,et al.  Design Sensitivity Analysis: Computational Issues on Sensitivity Equation Methods , 2002 .

[10]  Shripad Tuljapurkar,et al.  Structured-Population Models in Marine, Terrestrial, and Freshwater Systems , 1997, Population and Community Biology Series.

[11]  B. Fitzpatrick,et al.  Modeling aggregation and growth processes in an algal population model: analysis and computations , 1997 .

[12]  J. Cushing Some competition models for size-structured populations , 1990 .

[13]  Giuseppe Baselli,et al.  Modelling and disentangling physiological mechanisms: linear and nonlinear identification techniques for analysis of cardiovascular regulation , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Man Hoi Lee,et al.  A SURVEY OF NUMERICAL SOLUTIONS TO THE COAGULATION EQUATION , 2008 .

[15]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[16]  Franz Kappel,et al.  Modeling the human cardiovascular control response to blood volume loss due to hemorrhage , 2006 .

[17]  Claudio Cobelli,et al.  Generalized Sensitivity Functions in Physiological System Identification , 1999, Annals of Biomedical Engineering.

[18]  Toshiyuki Fukushige,et al.  On the mass distribution of planetesimals in the early runaway stage , 1998 .

[19]  On the Calibration of a Size-Structured Population Model from Experimental Data , 2009, Acta biotheoretica.

[20]  Robert M. Ziff,et al.  Kinetics of polymer gelation , 1980 .

[21]  D. Wolf-Gladrow,et al.  The relationship between physical aggregation of phytoplankton and particle flux: a numerical model , 1992 .

[22]  J. Cushing An introduction to structured population dynamics , 1987 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  David Ruppert,et al.  Transformation and Weighting , 2014 .

[25]  T. Kiørboe Formation and fate of marine snow: small-scale processes with large- scale implications , 2001 .

[26]  Stefan Heinrich,et al.  Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage , 2009 .

[27]  H. Müller,et al.  Zur allgemeinen Theorie ser raschen Koagulation: Die Koagulation von Stäbchen- und Blättchenkolloiden; die Theorie beliebig polydisperser Systeme und der Strömungskoagulation , 1928 .

[28]  Harvey Thomas Banks,et al.  Generalized sensitivities and optimal experimental design , 2010 .

[29]  M. Smoluchowski,et al.  Drei Vortrage uber Diffusion, Brownsche Bewegung und Koagulation von Kolloidteilchen , 1916 .

[30]  J. Silk,et al.  The development of structure in the expanding universe , 1978 .

[31]  W. Marsden I and J , 2012 .

[32]  D. Bortz,et al.  Klebsiella pneumoniae Flocculation Dynamics , 2008, Bulletin of mathematical biology.

[33]  Man Hoi Lee,et al.  On the Validity of the Coagulation Equation and the Nature of Runaway Growth , 2000 .

[34]  Harvey Thomas Banks,et al.  Sensitivity functions and their uses in inverse problems , 2007 .

[35]  A. S. Ackleh Parameter estimation in a structured algal coagulation-fragmentation model , 1997 .

[36]  Jonathan A. D. Wattis,et al.  An introduction to mathematical models of coagulation–fragmentation processes: A discrete deterministic mean-field approach , 2006 .

[37]  D. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists , 1999 .

[38]  Lennart Persson,et al.  Size-Structured Populations , 1988, Springer Berlin Heidelberg.

[39]  S. Ellner,et al.  SIZE‐SPECIFIC SENSITIVITY: APPLYING A NEW STRUCTURED POPULATION MODEL , 2000 .

[40]  Claudio Cobelli,et al.  Sensitivity Analysis of Retrovirus HTLV-1 Transactivation , 2011, J. Comput. Biol..

[41]  Hiro-Sato Niwa,et al.  School size statistics of fish , 1998, Journal of theoretical biology.

[42]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.