Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities.

[1]  Jijiang Fu,et al.  Enhanced osseointegration and antibacterial action of zinc-loaded titania-nanotube-coated titanium substrates: in vitro and in vivo studies. , 2014, Journal of biomedical materials research. Part A.

[2]  B. Gao,et al.  Long-lasting in vivo and in vitro antibacterial ability of nanostructured titania coating incorporated with silver nanoparticles. , 2014, Journal of biomedical materials research. Part A.

[3]  F. Kloss,et al.  Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. , 2013, Biomaterials.

[4]  Lingzhou Zhao,et al.  Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. , 2013, Biomaterials.

[5]  Xiang Li,et al.  Effect of reactive oxygen species overproduction on osteogenesis of porous titanium implant in the present of diabetes mellitus. , 2013, Biomaterials.

[6]  Lingzhou Zhao,et al.  The osteogenic activity of strontium loaded titania nanotube arrays on titanium substrates. , 2013, Biomaterials.

[7]  L. Miller,et al.  The antimicrobial and osteoinductive properties of silver nanoparticle/poly (DL-lactic-co-glycolic acid)-coated stainless steel. , 2012, Biomaterials.

[8]  Marcus J Schultz,et al.  Biomaterial-Associated Infection: Locating the Finish Line in the Race for the Surface , 2012, Science Translational Medicine.

[9]  Lingzhou Zhao,et al.  Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation. , 2012, Biomaterials.

[10]  Jiao Sun,et al.  Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface , 2012, International journal of nanomedicine.

[11]  C. Aparicio,et al.  In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests. , 2011, Journal of the mechanical behavior of biomedical materials.

[12]  Hongyi Li,et al.  Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. , 2011, Biomaterials.

[13]  Hongwei Ni,et al.  Antibacterial nano-structured titania coating incorporated with silver nanoparticles. , 2011, Biomaterials.

[14]  Jiang Chang,et al.  Effects of strontium in modified biomaterials. , 2011, Acta biomaterialia.

[15]  Husamettin Cakıcı,et al.  Effect of strontium ranelate on fracture healing in the osteoporotic rats , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[16]  Richard Ngo,et al.  The use of BMP-2 coupled - Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects. , 2010, Biomaterials.

[17]  K. Neoh,et al.  An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion. , 2010, Biomaterials.

[18]  Jing Hu,et al.  The effect of strontium-substituted hydroxyapatite coating on implant fixation in ovariectomized rats. , 2010, Biomaterials.

[19]  T. Fournel,et al.  Reversible and Irreversible Laser Microinscription on Silver‐Containing Mesoporous Titania Films , 2010, Advanced materials.

[20]  Soon Huat Tan,et al.  Calcium phosphate-based composites as injectable bone substitute materials. , 2010, Journal of Biomedical Materials Research. Part B - Applied biomaterials.

[21]  T. Hanawa,et al.  Osteoblast response and osseointegration of a Ti-6Al-4V alloy implant incorporating strontium. , 2010, Acta biomaterialia.

[22]  Yuan Gao,et al.  Strontium ranelate treatment enhances hydroxyapatite‐coated titanium screws fixation in osteoporotic rats , 2010, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[23]  René Rizzoli,et al.  Strontium ranelate improves implant osseointegration. , 2010, Bone.

[24]  Gavin Jell,et al.  The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. , 2010, Biomaterials.

[25]  Zhang Jingchao,et al.  Deposition of silver nanoparticles on titanium surface for antibacterial effect , 2010, International journal of nanomedicine.

[26]  Hala Zreiqat,et al.  The incorporation of strontium and zinc into a calcium-silicon ceramic for bone tissue engineering. , 2010, Biomaterials.

[27]  Tahlia L. Weis,et al.  Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. , 2010, Biomaterials.

[28]  E. Luo,et al.  Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats , 2010, Osteoporosis International.

[29]  Jurek Duszczyk,et al.  In vitro antibacterial activity of porous TiO2-Ag composite layers against methicillin-resistant Staphylococcus aureus. , 2009, Acta biomaterialia.

[30]  Lingzhou Zhao,et al.  Antibacterial coatings on titanium implants. , 2009, Journal of biomedical materials research. Part B, Applied biomaterials.

[31]  P. Chu,et al.  Bioactive SrTiO(3) nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants. , 2009, ACS nano.

[32]  L. F. Gorup,et al.  International Journal of Antimicrobial Agents the Growing Importance of Materials That Prevent Microbial Adhesion: Antimicrobial Effect of Medical Devices Containing Silver , 2022 .

[33]  M. Welch,et al.  Bacterial and mammalian cell response to poly(3-sulfopropyl methacrylate) brushes loaded with silver halide salts. , 2009, Biomaterials.

[34]  Sungho Jin,et al.  Stem cell fate dictated solely by altered nanotube dimension , 2009, Proceedings of the National Academy of Sciences.

[35]  K. Neoh,et al.  Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. , 2008, Biomaterials.

[36]  M. Winterhalter,et al.  The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria , 2008, Nature Reviews Microbiology.

[37]  M Fini,et al.  Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: in vitro osteoblast and osteoclast response. , 2008, Acta biomaterialia.

[38]  K. Neoh,et al.  Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. , 2008, Biomaterials.

[39]  F. Saltel,et al.  Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro. , 2008, Bone.

[40]  Tejal A Desai,et al.  Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? , 2007, Small.

[41]  René Rizzoli,et al.  Strontium Ranelate Treatment Improves Trabecular and Cortical Intrinsic Bone Tissue Quality, a Determinant of Bone Strength , 2007, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[42]  A. Bandyopadhyay,et al.  Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. , 2007, Acta biomaterialia.

[43]  W. Winkelmann,et al.  Lack of toxicological side-effects in silver-coated megaprostheses in humans. , 2007, Biomaterials.

[44]  N. Sharkey,et al.  Effects of Strontium on Bone Strength, Density, Volume, and Microarchitecture in Laying Hens , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[45]  Y. Liu,et al.  In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. , 2006, Biomaterials.

[46]  L. Vico,et al.  3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis , 2000, Medical and Biological Engineering and Computing.

[47]  Margaret Tzaphlidou,et al.  The role of collagen in bone structure: an image processing approach. , 2005, Micron.

[48]  R. Rizzoli,et al.  Pamidronate Prevents Bone Loss and Decreased Bone Strength in Adult Female and Male Rats Fed an Isocaloric Low‐Protein Diet , 2005, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[49]  R. G. Richards,et al.  Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. , 2004, Biomaterials.

[50]  Michael Wagener,et al.  An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. , 2004, Biomaterials.

[51]  P. Marie,et al.  S12911-2 reduces bone loss induced by short-term immobilization in rats. , 2003, Bone.

[52]  R. Donlan,et al.  Biofilms: Microbial Life on Surfaces , 2002, Emerging infectious diseases.

[53]  A. Massè,et al.  Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. , 2002, Biomaterials.

[54]  J. Costerton,et al.  Antibiotic resistance of bacteria in biofilms , 2001, The Lancet.

[55]  TOR Hildebrand,et al.  Quantification of Bone Microarchitecture with the Structure Model Index. , 1997, Computer methods in biomechanics and biomedical engineering.

[56]  P. Rüegsegger,et al.  Morphometric analysis of noninvasively assessed bone biopsies: comparison of high-resolution computed tomography and histologic sections. , 1996, Bone.

[57]  A D Russell,et al.  Antimicrobial activity and action of silver. , 1994, Progress in medicinal chemistry.

[58]  T. Schmalzried,et al.  Etiology of deep sepsis in total hip arthroplasty. The significance of hematogenous and recurrent infections. , 1992, Clinical Orthopaedics and Related Research.

[59]  A. Gristina,et al.  Biomaterial-centered infection: microbial adhesion versus tissue integration. , 1987, Science.

[60]  S. Green,et al.  Chronic osteomyelitis in pin tracks. , 1984, The Journal of bone and joint surgery. American volume.