Practical strategies for generating rank-1 split cuts in mixed-integer linear programming

In this paper we propose practical strategies for generating split cuts, by considering integer linear combinations of the rows of the optimal simplex tableau, and deriving the corresponding Gomory mixed-integer cuts; potentially, we can generate a huge number of cuts. A key idea is to select subsets of variables, and cut deeply in the space of these variables. We show that variables with small reduced cost are good candidates for this purpose, yielding cuts that close a larger integrality gap. An extensive computational evaluation of these cuts points to the following two conclusions. The first is that our rank-1 cuts improve significantly on existing split cut generators (Gomory cuts from single tableau rows, MIR, Reduce-and-Split, Lift-and-Project, Flow and Knapsack cover): on MIPLIB instances, these generators close 24% of the integrality gap on average; adding our cuts yields an additional 5%. The second conclusion is that, when incorporated in a Branch-and-Cut framework, these new cuts can improve computing time on difficult instances.

[1]  Kent Andersen,et al.  Reduce-and-Split Cuts: Improving the Performance of Mixed-Integer Gomory Cuts , 2005, Manag. Sci..

[2]  E. Balas,et al.  Strengthening cuts for mixed integer programs , 1980 .

[3]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[4]  Egon Balas,et al.  Generating lift-and-project cuts from the LP simplex tableau: open source implementation and testing of new variants , 2009, Math. Program. Comput..

[5]  Egon Balas,et al.  Optimizing over the split closure , 2008, Math. Program..

[6]  François Margot,et al.  Testing cut generators for mixed-integer linear programming , 2009, Math. Program. Comput..

[7]  Egon Balas Disjunctive Programming , 2010, 50 Years of Integer Programming.

[8]  Martin W. P. Savelsbergh,et al.  An Updated Mixed Integer Programming Library: MIPLIB 3.0 , 1998 .

[9]  G. Nemhauser,et al.  Integer Programming , 2020 .

[10]  R. Gomory AN ALGORITHM FOR THE MIXED INTEGER PROBLEM , 1960 .

[11]  Miklós Ajtai,et al.  The shortest vector problem in L2 is NP-hard for randomized reductions (extended abstract) , 1998, STOC '98.

[12]  Andrea Lodi,et al.  MIR closures of polyhedral sets , 2009, Math. Program..

[13]  Robert E. Bixby,et al.  Progress in computational mixed integer programming—A look back from the other side of the tipping point , 2007, Ann. Oper. Res..

[14]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[15]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[16]  Laurence A. Wolsey,et al.  A recursive procedure to generate all cuts for 0–1 mixed integer programs , 1990, Math. Program..

[17]  Egon Balas,et al.  Intersection Cuts - A New Type of Cutting Planes for Integer Programming , 1971, Oper. Res..

[18]  Matteo Fischetti,et al.  Projected Chvátal–Gomory cuts for mixed integer linear programs , 2008, Math. Program..

[19]  Thorsten Koch,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Miplib 2003 , 2022 .

[20]  Gérard Cornuéjols,et al.  Improved strategies for branching on general disjunctions , 2011, Math. Program..