Short text topic modeling by exploring original documents

[1]  Erik Cambria,et al.  Sentic LDA: Improving on LDA with semantic similarity for aspect-based sentiment analysis , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[2]  Sinno Jialin Pan,et al.  Short and Sparse Text Topic Modeling via Self-Aggregation , 2015, IJCAI.

[3]  Yan Zhang,et al.  User Based Aggregation for Biterm Topic Model , 2015, ACL.

[4]  Vivek Kumar Rangarajan Sridhar,et al.  Unsupervised Topic Modeling for Short Texts Using Distributed Representations of Words , 2015, VS@HLT-NAACL.

[5]  Erik Cambria,et al.  Discriminative Bi-Term Topic Model for Headline-Based Social News Clustering , 2015, FLAIRS.

[6]  Michael Röder,et al.  Exploring the Space of Topic Coherence Measures , 2015, WSDM.

[7]  Jihong Ouyang,et al.  Group topic model: organizing topics into groups , 2015, Information Retrieval Journal.

[8]  Xiaohui Yan,et al.  A Probabilistic Model for Bursty Topic Discovery in Microblogs , 2015, AAAI.

[9]  Yuan Zuo,et al.  Word network topic model: a simple but general solution for short and imbalanced texts , 2014, Knowledge and Information Systems.

[10]  Tomohiro Yoshikawa,et al.  Twitter-TTM: An efficient online topic modeling for Twitter considering dynamics of user interests and topic trends , 2014, 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intelligent Systems (ISIS).

[11]  Jiafeng Guo,et al.  BTM: Topic Modeling over Short Texts , 2014, IEEE Transactions on Knowledge and Data Engineering.

[12]  Jianyong Wang,et al.  A dirichlet multinomial mixture model-based approach for short text clustering , 2014, KDD.

[13]  Timothy Baldwin,et al.  Machine Reading Tea Leaves: Automatically Evaluating Topic Coherence and Topic Model Quality , 2014, EACL.

[14]  Diego Reforgiato Recupero,et al.  Frame-Based Detection of Opinion Holders and Topics: A Model and a Tool , 2014, IEEE Computational Intelligence Magazine.

[15]  Raymond Y. K. Lau,et al.  A Probabilistic Generative Model for Mining Cybercriminal Networks from Online Social Media , 2014, IEEE Computational Intelligence Magazine.

[16]  Scott Sanner,et al.  Improving LDA topic models for microblogs via tweet pooling and automatic labeling , 2013, SIGIR.

[17]  Xiaohui Yan,et al.  A biterm topic model for short texts , 2013, WWW.

[18]  Himabindu Lakkaraju,et al.  Dynamic Multi-relational Chinese Restaurant Process for Analyzing Influences on Users in Social Media , 2012, 2012 IEEE 12th International Conference on Data Mining.

[19]  Andrew McCallum,et al.  Optimizing Semantic Coherence in Topic Models , 2011, EMNLP.

[20]  Grigorios Tsoumakas,et al.  Random K-labelsets for Multilabel Classification , 2022 .

[21]  Hongfei Yan,et al.  Comparing Twitter and Traditional Media Using Topic Models , 2011, ECIR.

[22]  Brian D. Davison,et al.  Empirical study of topic modeling in Twitter , 2010, SOMA '10.

[23]  Timothy Baldwin,et al.  Automatic Evaluation of Topic Coherence , 2010, NAACL.

[24]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[25]  Chong Wang,et al.  Reading Tea Leaves: How Humans Interpret Topic Models , 2009, NIPS.

[26]  Susumu Horiguchi,et al.  Learning to classify short and sparse text & web with hidden topics from large-scale data collections , 2008, WWW.

[27]  John D. Lafferty,et al.  A correlated topic model of Science , 2007, 0708.3601.

[28]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[29]  Mark Steyvers,et al.  Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[31]  Sebastian Thrun,et al.  Text Classification from Labeled and Unlabeled Documents using EM , 2000, Machine Learning.

[32]  Gerlof Bouma,et al.  Normalized (pointwise) mutual information in collocation extraction , 2009 .