A review on development of nanofluid preparation and characterization

Nanofluids, as a kind of new engineering material consisting of nanometer-sized additives and base fluids, have attracted great attention of investigators for its superior thermal properties and many potential applications. Many investigations on nanofluids were reported and especially some interesting phenomena, new experimental results and theoretical study on nanofluids, in which consistent and inconsistent even contrary conclusions were reported, have been presented in literature. The aim of this review is to summarize recent development in research on synthesis and characterization of stationary nanofluids and try to find some challenging issues that need to be solved for future research.

[1]  Yassin A. Hassan,et al.  Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids , 2008 .

[2]  S. Phillpot,et al.  Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) , 2002 .

[3]  J. Fish,et al.  Role of Brownian motion hydrodynamics on nanofluid thermal conductivity , 2006 .

[4]  Clement Kleinstreuer,et al.  Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids , 2005 .

[5]  C. T. Nguyen,et al.  Temperature and particle-size dependent viscosity data for water-based nanofluids : Hysteresis phenomenon , 2007 .

[6]  E. Grulke,et al.  Anomalous thermal conductivity enhancement in nanotube suspensions , 2001 .

[7]  Simon R. Phillpot,et al.  Effect of liquid layering at the liquid–solid interface on thermal transport , 2004 .

[8]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[9]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[10]  C. Nan,et al.  Effective thermal conductivity of particulate composites with interfacial thermal resistance , 1997 .

[11]  Haisheng Chen,et al.  Heat Transfer Intensification Using Nanofluids , 2007 .

[12]  Junming Li,et al.  Experimental viscosity measurements for copper oxide nanoparticle suspensions , 2002 .

[13]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[14]  Helen L. W. Chan,et al.  Enhanced dielectric properties of highly (100)-oriented Ba(Zr,Ti)O₃ thin films grown on La[sub 0.7]Sr[sub 0.3]MnO₃ bottom layer , 2006 .

[15]  R. Prasher,et al.  Thermal conductance of nanofluids: is the controversy over? , 2008 .

[16]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[17]  C. T. Nguyen,et al.  Viscosity data for Al2O3-Water nanofluid - Hysteresis : is heat transfer enhancement using nanofluids reliable? , 2008 .

[18]  Yujin Hwang,et al.  Thermal conductivity and lubrication characteristics of nanofluids , 2006 .

[19]  Sarit K. Das,et al.  Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects , 2003 .

[20]  G Walter,et al.  "Safe" Coulomb excitation of 30Mg. , 2005, Physical review letters.

[21]  L. Gao,et al.  Effective thermal conductivity in nanofluids of nonspherical particles with interfacial thermal resistance: Differential effective medium theory , 2006 .

[22]  D. Das,et al.  Temperature dependent rheological property of copper oxide nanoparticles suspension (nanofluid). , 2006, Journal of nanoscience and nanotechnology.

[23]  D. Cahill,et al.  Thermal conductivity of nanoparticle suspensions , 2006 .

[24]  Q. Xue Model for thermal conductivity of carbon nanotube-based composites , 2005 .

[25]  Tae-Keun Hong,et al.  Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles , 2006 .

[26]  Jacob Fish,et al.  Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids , 2008 .

[27]  Cen Ke-fa Viscosity of Monodisperse Silica Nanofluids , 2006 .

[28]  Liang Zuo,et al.  Crystal structure and phase transformation in Ni53Mn25Ga22 shape memory alloy from 20Kto473K , 2005 .

[29]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[30]  Y. Xuan,et al.  Aggregation structure and thermal conductivity of nanofluids , 2003 .

[31]  Chen Ru-dong Research on Thermal Conductivity of Metal-oxide Nanofluids , 2006 .

[32]  R. Prasher,et al.  Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). , 2006, Nano letters.

[33]  K. Leong,et al.  A model for the thermal conductivity of nanofluids – the effect of interfacial layer , 2006 .

[34]  Jinlin Wang,et al.  Measurements of nanofluid viscosity and its implications for thermal applications , 2006 .

[35]  Q. Xue Model for effective thermal conductivity of nanofluids , 2003 .

[36]  T. Lundgren,et al.  Slow flow through stationary random beds and suspensions of spheres , 1972, Journal of Fluid Mechanics.

[37]  Xing Zhang,et al.  Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids , 2006 .

[38]  Kyu-Hwang Yeon,et al.  Exciton dynamics in a nanocrystal chain with a ring , 2006 .

[39]  Huaqing Xie,et al.  Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture , 2005 .

[40]  Sarit K. Das,et al.  Heat Transfer in Nanofluids—A Review , 2006 .

[41]  T E Browder,et al.  Search for the lepton-flavor-violating decay tau- -->micro-eta at Belle. , 2004, Physical review letters.

[42]  C. Choi,et al.  Analysis of convective instability and heat transfer characteristics of nanofluids , 2004 .

[43]  G. Peterson,et al.  Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) , 2006 .

[44]  Stephen U. S. Choi Enhancing thermal conductivity of fluids with nano-particles , 1995 .

[45]  G. Batchelor The effect of Brownian motion on the bulk stress in a suspension of spherical particles , 1977, Journal of Fluid Mechanics.

[46]  Sarit K. Das,et al.  Model for heat conduction in nanofluids. , 2004, Physical review letters.

[47]  Hongbin Ma,et al.  Plasma treatment of diamond nanoparticles for dispersion improvement in water , 2006 .

[48]  Z. Han,et al.  Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids , 2006 .

[49]  E. Grulke,et al.  Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow , 2005 .

[50]  Yuanhua Lin,et al.  Interface effect on thermal conductivity of carbon nanotube composites , 2004 .

[51]  Q. Xue,et al.  A model of thermal conductivity of nanofluids with interfacial shells , 2005 .

[52]  Haisheng Chen,et al.  Rheological behaviour of ethylene glycol based titania nanofluids , 2007 .

[53]  Yansheng Yin,et al.  EFFECTS OF NANOPARTICLE CLUSTERING AND ALIGNMENT ON THERMAL CONDUCTIVITIES OF FE3O4 AQUEOUS NANOFLUIDS , 2006 .

[54]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method , 2006 .

[55]  Lei Gao,et al.  Differential effective medium theory for thermal conductivity in nanofluids , 2006 .

[56]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[57]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[58]  Claudia Felser,et al.  Half-metallic ferromagnetism with high magnetic moment and high Curie temperature in Co2FeSi , 2006 .

[59]  K. Leong,et al.  Thermophysical and electrokinetic properties of nanofluids – A critical review , 2008 .

[60]  Linda S. Schadler,et al.  High-precision thermal conductivity measurements as a probe of polymer/nanoparticle interfaces , 2003 .

[61]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[62]  W. Roetzel,et al.  Pool boiling characteristics of nano-fluids , 2003 .

[63]  Tae-Keun Hong,et al.  Study of the enhanced thermal conductivity of Fe nanofluids , 2005 .

[64]  Yulong Ding,et al.  Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) , 2006 .

[65]  Q. Xue,et al.  Model for the effective thermal conductivity of carbon nanotube composites , 2006, Nanotechnology.

[66]  Chi-Chuan Wang,et al.  Enhancement of thermal conductivity with carbon nanotube for nanofluids , 2005 .

[67]  Mansoo Choi,et al.  Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities , 2003 .

[68]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[69]  Xing Zhang,et al.  Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles , 2006 .

[70]  D. Misra,et al.  Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture , 2007 .

[71]  Peng Xiao-feng Research on stability of nano-particle suspension , 2003 .

[72]  H. Chan,et al.  dc bias-induced dielectric anomalies in -oriented 0.9Pb(Mg[sub ⅓]Nb[sub ⅔]O₃)-0.1PbTiO₃ single crystals , 2006 .

[73]  Xinhua Zhu,et al.  Microstructure of compositionally-graded (Ba[sub 1-x]Sr[sub x])TiO₃ thin films epitaxially grown on La[sub 0.5]Sr[sub 0.5]CoO₃-covered (100) LaAlO₃ substrates by pulsed laser deposition , 2005 .

[74]  Xianju Wang,et al.  Evaluation on dispersion behavior of the aqueous copper nano-suspensions. , 2007, Journal of colloid and interface science.

[75]  J. Eastman,et al.  Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles , 1999 .

[76]  B. Ku,et al.  Stability and thermal conductivity characteristics of nanofluids , 2007 .

[77]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[78]  E. Garboczi,et al.  Interfacial transport in porous media: Application to dc electrical conductivity of mortars , 1995 .

[79]  B. Yang,et al.  Temperature-dependent thermal conductivity of nanorod-based nanofluids , 2006 .

[80]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[81]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[82]  R. Prasher,et al.  Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids , 2004 .

[83]  Seok Pil Jang,et al.  Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles , 2008 .

[84]  William W. Yu,et al.  ANOMALOUSLY INCREASED EFFECTIVE THERMAL CONDUCTIVITIES OF ETHYLENE GLYCOL-BASED NANOFLUIDS CONTAINING COPPER NANOPARTICLES , 2001 .

[85]  Zhu Dongsheng,et al.  Dispersion behavior and thermal conductivity characteristics of Al2O3–H2O nanofluids , 2009 .

[86]  Y. Xuan,et al.  Heat transfer enhancement of nanofluids , 2000 .

[87]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[88]  Haifeng Zhu,et al.  A novel one-step chemical method for preparation of copper nanofluids. , 2004, Journal of colloid and interface science.

[89]  Kai Zhang,et al.  Review of nanofluids for heat transfer applications , 2009 .

[90]  C. Choy,et al.  Dielectric properties and abnormal C-V characteristics of Ba[sub 0.5]Sr[sub 0.5]TiO₃-Bi[sub 1.5]ZnNb[sub 1.5]O[sub 7] composite thin films grown on MgO (001) substrates by pulsed laser deposition , 2006 .

[91]  Jing Liu,et al.  Nano liquid-metal fluid as ultimate coolant , 2007 .

[92]  Huaqing Xie,et al.  Thermal conductivity enhancement of suspensions containing nanosized alumina particles , 2002 .

[93]  Tsing-Tshih Tsung,et al.  Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS) , 2005 .

[94]  C. Nan,et al.  A simple model for thermal conductivity of carbon nanotube-based composites , 2003 .

[95]  R. Prasher,et al.  Thermal conductivity of nanoscale colloidal solutions (nanofluids). , 2005, Physical review letters.

[96]  Peng Xiaofeng Stability of Nano-particle Suspensions , 2003 .

[97]  Hong-Ming Lin,et al.  Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS) , 2005 .

[98]  Haisheng Chen,et al.  Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe , 2007 .

[99]  Wenhua Yu,et al.  The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model , 2004 .

[100]  K. Leong,et al.  Enhanced thermal conductivity of TiO2—water based nanofluids , 2005 .

[101]  Dean‐Mo Liu Influence of dispersant on powders dispersion and properties of zirconia green compacts , 2000 .

[102]  D. Cahill,et al.  Nanofluids for thermal transport , 2005 .