Anodic stripping voltammetric determination of copper(II) using a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan

Abstract The development and application of a functionalized carbon nanotubes paste electrode (CNPE) modified with crosslinked chitosan for determination of Cu(II) in industrial wastewater, natural water and human urine samples by linear scan anodic stripping voltammetry (LSASV) are described. Different electrodes were constructed using chitosan and chitosan crosslinked with glutaraldehyde (CTS-GA) and epichlorohydrin (CTS-ECH). The best voltammetric response for Cu(II) was obtained with a paste composition of 65% (m/m) of functionalized carbon nanotubes, 15% (m/m) of CTS-ECH, and 20% (m/m) of mineral oil using a solution of 0.05 mol L−1 KNO3 with pH adjusted to 2.25 with HNO3, an accumulation potential of −0.3 V vs. Ag/AgCl (3.0 mol L−1 KCl) for 300 s and a scan rate of 100 mV s−1. Under these optimal experimental conditions, the voltammetric response was linearly dependent on the Cu(II) concentration in the range from 7.90 × 10−8 to 1.60 × 10−5 mol L−1 with a detection limit of 1.00 × 10−8 mol L−1. The samples analyses were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained with results in the range from 98.0% to 104%. The analysis of industrial wastewater, natural water and human urine samples obtained using the proposed CNPE modified with CTS-ECH electrode and those obtained using a comparative method are in agreement at the 95% confidence level.

[1]  A. Domard,et al.  New route of deacetylation of α- and β-chitins by means of freeze-pump out-thaw cycles , 2005 .

[2]  W. Ngah,et al.  Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads , 2002 .

[3]  A. Sastre,et al.  Palladium sorption on glutaraldehyde-crosslinked chitosan , 2000 .

[4]  Ya‐Ping Sun,et al.  Functionalizing multiple-walled carbon nanotubes with aminopolymers , 2002 .

[5]  Liping Yang,et al.  Preparation of multi-walled carbon nanotubes grafted with synthetic poly(l-lysine) through surface-initiated ring-opening polymerization , 2007 .

[6]  Mao-gen Zhang,et al.  Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors. , 2007, Analytical chemistry.

[7]  Bruno C. Janegitz,et al.  Anodic Stripping Voltammetric Determination of Mercury in Water Using a Chitosan‐Modified Carbon Paste Electrode , 2007 .

[8]  Qiang Zhao,et al.  Electrochemical sensors based on carbon nanotubes , 2002 .

[9]  Ashutosh Kumar Singh,et al.  Selective electrochemical sensor for copper (II) ion based on chelating ionophores. , 2006, Analytica chimica acta.

[10]  O. Fatibello-Filho,et al.  Desenvolvimento de um método empregando quitosana para remoção de íons metálicos de águas residuárias , 2007 .

[11]  M. Ganjali,et al.  Use of organofunctionalized nanoporous silica gel to improve the lifetime of carbon paste electrode for determination of copper(II) ions. , 2007, Analytica chimica acta.

[12]  Maogen Zhang,et al.  Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. , 2004, Analytical chemistry.

[13]  Tonni Agustiono Kurniawan,et al.  Low-cost adsorbents for heavy metals uptake from contaminated water: a review. , 2003, Journal of hazardous materials.

[14]  W. Sigmund,et al.  Functionalized multiwall carbon nanotube/gold nanoparticle composites. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  Y. Koyama,et al.  Studies on chitin X. Homogeneous cross-linking of chitosan for enhanced cupric ion adsorption , 1986 .

[16]  R. Vieira,et al.  Dynamic and static adsorption and desorption of Hg(II) ions on chitosan membranes and spheres. , 2006, Water research.

[17]  John F. Kennedy,et al.  Metal complexation by chitosan and its derivatives: a review , 2004 .

[18]  Richard W. Siegel,et al.  Selective Attachment of Gold Nanoparticles to Nitrogen-Doped Carbon Nanotubes , 2003 .

[19]  R. Vieira,et al.  Interaction of natural and crosslinked chitosan membranes with Hg(II) ions , 2006 .

[20]  M S Chiou,et al.  Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads. , 2003, Chemosphere.

[21]  B. Chandravanshi,et al.  Differential pulse anodic stripping voltammetric determination of copper(II) with N-phenylcinnamohydroxamic acid modified carbon paste electrodes , 1998 .

[22]  Nanqiang Li,et al.  Electrochemical behaviour of gold, silver, platinum and palladium on the glassy carbon electrode modified by chitosan and its application. , 1998, Talanta.

[23]  T. Hsien,et al.  Heterogeneous Cross-Linking of Chitosan Gel Beads: Kinetics, Modeling, and Influence on Cadmium Ion Adsorption Capacity , 1997 .

[24]  Shengshui Hu,et al.  Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes , 2003 .

[25]  K. Noguchi,et al.  Molecular and Crystal Structure of Hydrated Chitosan , 1997 .

[26]  Yuehe Lin,et al.  Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes , 2002 .

[27]  C. Airoldi,et al.  Some studies of crosslinking chitosan-glutaraldehyde interaction in a homogeneous system. , 1999, International journal of biological macromolecules.

[28]  Hüsnü Cankurtaran,et al.  Determination of Trace Amounts of Copper in Tap Water Samples with a Calix[4]arene Modified Carbon Paste Electrode by Differential Pulse Anodic Stripping Voltammetry , 2007 .

[29]  Qionglin Liang,et al.  Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid , 2003 .

[30]  L. Kavan,et al.  Electrochemical tuning of electronic structure of carbon nanotubes and fullerene peapods , 2004 .

[31]  Joseph Wang,et al.  Carbon nanotube-modified glassy carbon electrode for adsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene , 2004 .

[32]  A. Walcarius,et al.  Electrochemical modulation of the ligand properties of organically modified mesoporous silicas , 2005 .

[33]  Aiqin Wang,et al.  Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan. , 2006, Journal of hazardous materials.

[34]  M. Kawasaki,et al.  Electrode coatings based on chitosan scaffolds. , 2000, Analytical chemistry.

[35]  H. Mukai,et al.  Copper(II)-selective membrane electrode based on hydrotris(3-isopropylpyrazolyl)methane in a poly(vinyl chloride) matrix , 2003 .

[36]  B. Krajewska Application of chitin- and chitosan-based materials for enzyme immobilizations: a review , 2004 .

[37]  Mao-gen Zhang,et al.  Electrochemical sensing based on redox mediation at carbon nanotubes. , 2005, Analytical chemistry.

[38]  Xiaoyong Zou,et al.  An amperometric cholesterol biosensor based on multiwalled carbon nanotubes and organically modified sol-gel/chitosan hybrid composite film. , 2005, Analytical biochemistry.

[39]  A. Abbaspour,et al.  Chemically modified carbon paste electrode for determination of copper(II) by potentiometric method. , 2002, Talanta.

[40]  André L. A. Santos,et al.  Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica. , 2007, Talanta.

[41]  E. A. Silva,et al.  Adsorption and desorption of binary mixtures of copper and mercury ions on natural and crosslinked chitosan membranes , 2007 .

[42]  K. Liang,et al.  Adsorption of Gold(III) Ions onto Chitosan and N-Carboxymethyl Chitosan: Equilibrium Studies , 1999 .

[43]  Maogen Zhang,et al.  Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. , 2005, Journal of the American Chemical Society.

[44]  Daniel C. Harris,et al.  Quantitative Chemical Analysis , 1968, Nature.

[45]  J. Wightman,et al.  Interaction of heavy metals with chitin and chitosan. III. Chromium , 1982 .

[46]  Federica Valentini,et al.  Carbon nanotube purification: preparation and characterization of carbon nanotube paste electrodes. , 2003, Analytical chemistry.

[47]  Jun-feng Song,et al.  Catalytic adsorptive stripping voltammetric determination of copper(II) on a carbon paste electrode , 2005, Analytical and bioanalytical chemistry.

[48]  Richard G Compton,et al.  Abrasive immobilization of carbon nanotubes on a basal plane pyrolytic graphite electrode: application to the detection of epinephrine. , 2004, The Analyst.

[49]  Wlodzimierz Kutner,et al.  Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes , 2003 .

[50]  Jing Chen,et al.  Direct electron transfer of glucose oxidase promoted by carbon nanotubes. , 2004, Analytical biochemistry.

[51]  Jinchun Song,et al.  Adsorptive stripping voltammetric determination of 4-aminophenol at a single-wall carbon nanotubes film coated electrode. , 2003, Talanta.

[52]  W. L. Wang,et al.  Systematic investigation on the properties of carbon nanotube electrodes with different chemical treatments , 2004 .

[53]  Jun Li,et al.  Inlaid Multi-Walled Carbon Nanotube Nanoelectrode Arrays for Electroanalysis , 2005 .

[54]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[55]  C. Santana,et al.  Crosslinking of chitosan membranes using glutaraldehyde: Effect on ion permeability and water absorption , 2007 .

[56]  Shouzhuo Yao,et al.  Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. , 2004, Bioelectrochemistry.

[57]  L. Mao,et al.  Novel electrochemical method for sensitive determination of homocysteine with carbon nanotube-based electrodes. , 2004, Biosensors & bioelectronics.

[58]  P. Cloirec,et al.  Enhancement of Metal Ion Sorption Performances of Chitosan: Effect of the Structure on the Diffusion Properties , 1995 .

[59]  M. Chiou,et al.  Equilibrium and kinetic modeling of adsorption of reactive dye on cross-linked chitosan beads. , 2002, Journal of hazardous materials.

[60]  W. Ngah,et al.  Comparison study of copper ion adsorption on chitosan, Dowex A-1, and Zerolit 225 , 1998 .

[61]  C. Banks,et al.  Chemically Modified Carbon Nanotubes for Use in Electroanalysis , 2006 .

[62]  G. Rivas,et al.  Carbon nanotubes for electrochemical biosensing. , 2007, Talanta.

[63]  H. Sharghi,et al.  Application of artificial neural network to simultaneous potentiometric determination of silver(I), mercury(II) and copper(II) ions by an unmodified carbon paste electrode. , 2004, Talanta.

[64]  Yingchun Fu,et al.  Electrodeposition of carbon nanotubes-chitosan-glucose oxidase biosensing composite films triggered by reduction of p-benzoquinone or H2O2. , 2007, The journal of physical chemistry. B.

[65]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.